
Classification and automatic recognition of objects using H2o

package

Yenumula B Reddy

Department of Computer Science

Grambling State University

Grambling, LA 71245, USA

Email: ybreddy@gram.edu

ABSTRACT

Deep learning (DL) is a process that consists of a set of methods which classifies the raw data to meaningful information

that fed into the machine. Deep Convolutional nets composed of various processing layers to learn and represent the

data. It has multiple levels of abstraction to process images, video, speech and audio. H2o deep learning architecture has

many features that include supervised training protocol, memory efficient Java implementation, adaptive learning, and

with related CRAN packages. H2o uses supervised training protocol with a uniform adaptive option which is an

optimization based on the size of the network. It can take clusters of computing nodes to train on the entire data set but

automatically shuffling the training examples for each iteration locally. The framework supports regularization

techniques to prevent overfitting. Further, H2o R has intuitive web interface using localhost and IP address. In this

research the computations are performed in the H2o cluster and initiated by REST calls (in highly optimized Java code)

from R. Since SPARK is available in R, H2o uses a single R session to communicate H2o Java cluster via REST calls.

H2o runs inside the Spark executor JVM. Using these packages in R, we demonstrate the classification and automatic

recognition of objects. The research extends the NOAA VIIRS Night fires data to detect the persistent fire activity at a

given location around the globe. To perform the classification, we use the H2o deep learning package in R Language.

Keywords: deep Learning, convolutional neural networks, automatic object recognition, H2o Package,

SPARK package, classification, and cluster.

1. INTRODUCTION

Deep learning (DL) is a class of machine learning technique uses a set of algorithms that attempt to learn on multiple

levels where each level defines from lower levels. The procedure includes many layers of neural networks (supervised

or unsupervised) for feature extraction. The process uses pattern recognition and pattern analysis. The method is to make

sense of data such as text, sound, and images. The process is about modeling with deep architecture for signal and

information technology. DL models consist of multiple layers of nonlinear information processing and method for

unsupervised and supervised learning. The popularity of DL is increased general purpose graphical processing unit

(GPGPU) chip processing abilities in complex and computational nonlinear functions to learn distributed and

hierarchical feature representations.

Deep neural networks (DNN) categorized as unsupervised, supervised, and hybrid. The unsupervised learning does not

use any task specific supervision information in the learning process. It generates meaningful samples by sampling from

the networks. Examples include recurrent neural networks (used to predict the data sequence in the future using the

previous data samples) and sum-product network (a directed acyclic graph with observed variables as leaves and with

sum and product operations as internal nodes). The deep supervised learning (DSL) intended to directly provide pattern

classification where target label data are always available. In deep supervised networks (DSN) the output of the

discriminately learned neural network is treated as part of the observation variable. The Recent approach is the model

with many layers using backpropagation learning. Hybrid deep networks use generative and discriminative model

components. The generative models trained in unsupervised fashion can provide excellent initialization points in highly

nonlinear parameter estimation problems or adequately provide a prior on the set of functions representable by the model.

mailto:ybreddy@gram.edu

Training DNN is a challenging task. DL aims at learning features and hierarchies from lower level composition to higher

levels. A standard neural network consists of many simple, connected processors called neurons. Each input neuron

produces a sequence of real-valued activations. Input neurons get values from sensors or user data. The neurons in

hidden layers get activated through weights connected from previous active neurons. Some input neurons get activated

from the influence of environment triggering actions. Learning (credit assignment) is the way to make the NN desired

behavior through repeated computations. In deep learning, the system takes chains of computational stages, where each

stage transforms the aggregate actions of the network. DL is about accurately assigning credit across many stages.

Deep Learning is the hottest subject in machine learning. The popular software for DL including Caffe, Cuda-convert,

Deeplearning4j, Pylearn2, Theano, Torch, and other Deep Learning Tools. Theano is a Python library and useful for

making algorithms from scratch. Caffe can be used for image classification (not for text or speech) and can process over

60M images per day with a single NVIDIA K40 GPU. The Torch is written in Lua (easy to integrate with C) and can

provide an environment like MATLAB for ML algorithms. It is easy to start with and feature extractor trained on the

ImageNet dataset with Torch7. CuDNN (Cuda-convnet) supports all the mainstream software such as Caffe, Torch, and

Theano and is very easy to enable. DL is Java based, industry focused, commercially supported and designed to use in

business environments.

All DL-tools are open source, need training, use CPU and GPU. The core languages are different for different tools. For

example, Caffe and Cuda-convert use C++ and have Python bindings. Caffe can also bind with MATLAB. The core

language for Theano is Python and Torch7 has Lua. Most of these packages are distributed and do not have pre-trained

models (except Caffe). Table I shows the evaluation of DL toolkits.

Table I. Evaluation of Deep Learning Toolkits

Tool Modeling

Capability

Interfaces Model

Development

Performance Architecture Ecosystem Cross-

platform

Caffe Poor – for

recurrent

networks and

language

modeling

 need to

define in

protobuf

for

PyCaffe

 Poor in

interface

choice

 C++ based

 Best

choice

 Average

 Building

block is

layer

 Layerwise

design

 Extra

function to

support

CPU/GPU

Caffe

C++

yes

Tensor

Flow
 Poor in modeling

flexibility.

 Fairly easy

specifying a new

network

 Supports

Python and

C++

 Supports

C++

 No

Windows

Support

 Calls

CuDNN-

Best

Performanc

e

Well

designed and

dmodular

Python

C++

yes

Theano Has

implementation

for most state-of-

the-art networks.

 Scan makes

implementing

RNN easy and

efficient

 Python Has

windows

support

 Low level

interface

and

inefficienc

y of

Pyrthon

 Startup

problem

 Need to

compile

C/CUDA

code to

binary

 Hacky

 Python

Base

Python Yes

Torch Rich set of RNN

available

 Excellent for

Conv nets

 Easy to define

new layers

 LuaJIT Requires

LuaJIT

 Integration

problem at

API level

Calls CuDNN-

Best

Performance

 Well

designed

and

dmodular

Libraries

built for it

are not as

rich as ones

built for

Python.

not on

Window

s

DL tools in R language is still relatively new. They are extensible, and users can build blocks using simple math Legos

in the core. The process is fast, scalable, open source machine learning and deep learning for smarter applications. The

product uses dynamic pricing, insurance fraud detection, healthcare, telecommunications, and retail. H2o R can handle

billions of data rows in memory, even with a small cluster. H2o platform interface to R, Python, Scala, Java, JSON, and

Caffe. It runs on a stand-alone on Hadoop or within a Spark Cluster. Since we are planning to use H2o interfacing to R

for classification of objects, it requires introducing the features of H2o.

2. H2O FEATURES – MACHINE LEARNING IN R LANGUAGE

H2o is an open source CRAN package, distributed, Java machine learning library software, and ease of use via the Web

interface. The software was designed with distributed algorithms scale to big data and have an interface to Python, Scala,

R, Spark, and Hadoop. The H2o is scale to big data, access data links and use all data without sampling. It is interactive,

high-speed, accurate, faster in-memory and distributed. It has cutting-edge machine learning algorithms (linear

regression, logistic regression, etc.), Nano-fast scoring engine and deep learning modules (multilayer feed-forward

neural network, auto-encoder, anomaly detection, and deep learning features). It has K-means clustering, statistical

analysis, dimension reduction (principal component analysis and generalized low-rank models), optimization and data

munging (integrated R-environment, slice, and log transform).

H2o principal components are a cluster, frame, and distributed key-value store (a perfect peer-to-peer distributed hash

table). In distributed key-value store each key has a home node and are picked pseudo-randomly. Keys can be cached

anywhere, and key’s home is solely responsible for breaking ties. There is no name node or central dictionary for keys.

Data in H2o is memory bound not CPU bound. Linear access of data is compatible with C or FORTRAN. Data is highly

compressed (about 2 to 4 times smaller than gzip). The table length is limited by memory and table width is <1K fast,

<10K works, and < 100K slow.

H20 communications require Java virtual machine (JVM) and implements on remote procedure call (RPC). The failed

connections may retrieve by reconfiguring the network. H2o supports Map/Reduce to write parallel code. Distributed

fork/join and parallel map available within each node. GroupBy operator can handle millions of groups on billions of

rows and runs Map/Reduce tasks on the team members. It has overloaded all the necessary data frame manipulation

functions in R and Python.

Amazon Elastic Compute Cloud (EC2) cluster is an example of the high-performance computing (HPC). EC2 use cluster

computing and optimized for GPU instance types (virtual machines) in R with H2o. HPC allows engineers and scientists

to solve complex problems in engineering, science, and business problems. HPC-EC2 use applications that require high

bandwidth, enhanced networking and great compute capabilities. Amazon web service (AWS) allows the customers to

increase the speed of research by executing their applications with HPC facility in the cloud. The process reduces the

cost by providing Cluster Compute or Cluster GPU servers’ on-demand without significant capital investments. The

customer has access to a high bandwidth network, full-bisection, for tightly-coupled, and IO-intensive workloads, which

enables them to scale out across thousands of cores for throughput-oriented applications. The experiment of Eric LeDell

[1] shows that H2o with 16 ECT nodes on Amazon has high throughput with numerical compared to numerical and

categorical.

H2o uses the model of multi-layer, feedforward neural networks for predictive modeling. H2o uses purely supervised

training protocol. The H2o’s DL features include supervised training protocol for regression and classification tasks,

automatic pre- and post-processing for categorical and numerical data, and deep autoencoders for unsupervised feature

learning and anomaly detection.

The reference [2] provides H2o installation (steps to load H2o), R connecting to H2o cluster, and deep learning overview.

The authors discussed with examples of DL model with R code, the performance of the trained model, training metrics,

validation, cross-validation, and view predictions in R, Web interface, grid search, and random grid search. We tested

the code on Windows 10 based Intel Core i7 with NVIDIA GEFORCE GTX 980M computer. Grid search, print out all

prediction errors, restart training in R checkpoint model, save the model and retrieve the model was working correctly.

Arno et al. [2] updated the document on September 16, 2016, helps many researchers working in deep learning using

H2o in R language.

High-performance machine learning in R with H2o [3] published in ISM HPC workshop in 2015 is another important

document. The author discussed building H2o on Hadoop and H2o vs. SparkR. Details were not provided to test the

model. Arno and Viraj [4] presents the MNIST digit classification and Web interface. The work is close to Amir et al.

[2]. MNIST digit classification and achieving world record performance is same as in [2], but Amo et al. discussed

more explicitly.

3. REVIEW OF RECENT WORK

H2o is an open source parallel processing software for machine learning (ML) on Big Data (BD). The software has

number of impressive statistical and ML algorithms to run on HDFS, S3, SQL, and NoSQL. ML with R and H2o [5]

has been available through http://h2o.ai/recources. The documentation provides data preparation, models, manipulation,

and running models in R. Bernd et al. [6] presented the ML in R package that facilitates researchers to apply ML

algorithms. They introduced the ML package in R provides unified interface to more than 160 primary learners and

includes meta-algorithm and model selection techniques to improve and extend functionality. The features include hyper

parameter tuning, feature selection, and ensemble construction. In R, parallel high-performance computing is supported.

Machine learning with R [7] provides the tools to apply ML techniques to the research projects. The classification using

Naïve Bayes, nearest neighbor, decision trees, neural networks, clustering with K-means, and evaluating model

performance. The author discussed the classification prediction data in R and improving the model performance in the

book during last few chapters. Michal et al. [8] introduced H2o with capabilities of Spark (Sparkling water) to provide

ideal machine learning environment. The tutorial explains the H2o with Spark users ML algorithms of H2o can compete

with Scala, R, or Python that use with H2o. Sparkling water can provide deep learning to build a model, make

predictions, and use results again in Spark.

R language has high adaptability, and H2o R connects to Oxdata’s [9] software (Apache 2.0 license). The document

[10] ‘Fast Scalable R with H2o’ provides H2o launching from R, tools, and methods for data preparation, initialization,

data manipulation, and running various models including K-means, regression analysis, and predictions. The authors

explained step-by-step to the user to use the models in H2o R environment.

Se-Jeong Park et al [11] presented DL model for data analysis using R. The paper discusses the import and process data

and DL example. In the initial phase, they tried to collect data for DL through Web scraping program with H2o.

Experiments are underway. Gradient Boosted models [12] discusses the Airline data example. The document is primarily

provides loading data, Web interface, Java models, and grid search for model comparison. The report provides some

basics. Cliff et al. [13] used Airline data classification using H2o. They explained the predictions with a trial run. The

code is same as in [12] except updating the previous document. The code example in [14] helps to lead H2o R package

and start and local H2o cluster. The paper used the code to fit a basic logistic regression model. It generates performance

metrics from a single model, making class predictions based on a probability cutoff, remove short-term objects from R

and the H2O cluster, fit a gradient boosting machine binomial regression model, fit a random forest classifier, and fit a

deep learning classifier.

Sara et al. [15] presented the open source tools and their role in machine learning with big data in the Hadoop ecosystem.

The document discusses Hadoop ecosystems, data processing engines for Hadoop, fundamentals of MapReduce, H2o,

overview and evaluation of ML toolkits. The authors presented Samoa (new version of Mahout) for Spark and MLlib

for H2o and their wider selection of algorithms. They suggested the tools for social network and e-commerce. They also

studied the comparison of major machine learning frameworks (Mahout, MLLIB, H2o, and SAMOA) and their

scalability, speed, coverage, usability, and extensibility.

Chaitra et al. [16] presented H2o ML approach with D3 visualization. The authors used old traditional reports as data

for proposed research and demonstrated product recommendation. The tutorial on R and high-performance computing

(HPC) discusses the big data and parallel computing with various approaches including Spark, H2o, Dato’s SFrame. A

simple example was used to explain the process [17]. Drew [18] presented facilities of R, improving R performance,

interfacing with other languages, parallelism, and distributed computing. The demo examples demonstrate with the

appropriate code. The document helps to develop parallel applications.

The review of recent literature presented above reveals the practical work developed at different organizations and little

published in journals or conferences. The research is in infant level for object recognition with H2o. The implementation

in various directions using H2o, NVIDIA CUDA tools, and DL approaches. In this study, we will test unstructured data

available on Web database and later demonstrate with NOAA VIIRS Night fires data if available to detect the persistent

fire activity at a given location around the globe. Initially use R H2o and then use the DL approach.

4. STUDY OF RELATED PROBLEM TO CLASSIFY OBJEVTS

H2o package handles large datasets (billions of data) rows in memory even with a small cluster and works standalone

mode on Hadoop. Selection of H2o DL model (H2o uses supervised training protocol) is to represent raw data and

exhibit high performance on complex data like objects. Before we design our problem, we will work on two similar

examples. The first example is train and test of MNIST data using H2o DL package and the second airline problem. The

combination of these two prototypes helps to analyze and predict the persistent fire activity of NOAA VIIRS data at a

given location around the globe. The following are the sequence of statements in R to load the train and test data files.

> library(h2o)

> h2o.init(nthreads = -1)

> train_file <- "https://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/mnist/train.csv.gz"

> test_file <- "https://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/mnist/test.csv.gz"

> train <- h2o.importFile(train_file)

> test <- h2o.importFile(test_file)

> summary(train, exact_quanties=TRUE)

>summary(test, exact_quanties=TRUE)

The example uses the MNIST academic data set that consists of 60,000 training images and 10,000 test images. Each

image of size 28x28 (pixel greyscale image of a single hand-written image). We adjust the predictor column to 785.

Train the model using above commands in R. Table IIa, and IIb shows the summary of training and testing. Column 785

illustrates the number of samples trained or tested for each digit (digit class).

Table IIa. Summary of training

Table IIb. Summary of testing

The trial run image size is 28x28 = 784 pixels and column 785 is summary. The trial run uses 10 epochs and the following

code works for H2o DL model.

> y <- "C785"

> x <- setdiff(names(train),y)

> train[,y] <- as.factor(train[,y])

> test[,y] <- as.factor(test[,y])

> model <- h2o.deeplearning(x=x,y=y, training_frame = train, validation_frame = test,

+ distribution = "multinomial", activation ="RectifierWithDropout", hidden = c(32,32,32),

+ input_dropout_ratio = 0.2, sparse = TRUE, l1 = 1e-5, epochs = 10)

 |===| 100%

Warning message:

In .h2o.startModelJob(algo, params, h2oRestApiVersion) :

Dropping constant columns: [C86, C85, -----------, C84, C83].

>model

The sample part of the result is in Table III. The model has 5 layers, 25,418 weights, and 610,989 training samples. The

Training set matrices hit-ratio and validation matrices hit ratios are in Table IV.

Table III. H2o DL model

Table IV. Verification ratios and validation ratios are in

The cross-validation can be performed with the following code. keep_cross_validation_predictions=TRUE, keyword

saves the predicted values. The hit ratio in Table V shows the top 10 hit-ratio and cross-Validation closes to zero at 10th

hit. Cross-Validation Metrics Summary is provided in Table VI.

> model_cv <- h2o.deeplearning (x=x,y=y, training_frame=train, distribution = "multinomial",

+ activation = "RectifierWithDropout", hidden = c(32,32,32),

+ input_dropout_ratio = 0.2, keep_cross_validation_predictions=TRUE, sparse = TRUE, l1=1e-5,

epochs=10,nfolds=5)

 ==| 100%

Warning message:

In .h2o.startModelJob(algo, params, h2oRestApiVersion) :

 Dropping constant columns: [C86, . . . , C84, C83].

Table V. Top 10 hit-ratio and cross-Validation

Table VI Cross-Validation Metrics Summary

The world class performance of the model takes 100 minutes with 1 node with 64 epochs. In the current case we

completed the model with 10 epochs on Intel core i7 with NVIDIA GEFORCE GTX 980 laptop in (start time 14:25:16

and end time 14:59:57) 34 minutes and 41 seconds. It has 5 layers and layer 1 has 717 units (nodes), layer 2 and 3 with

1024 units, layer 4 has 2018 and layer 5 has 10 units. Layer 1 is input, layers 2, 3, and 4 are dropouts and layer 5 is

softmax (10 digits). The code is given below. Figure 1 and procedure to work is from [4].

> model <- h2o.deeplearning(x=x,y=y, training_frame=train, validation_frame=test,

+ activation="RectifierWithDropout",hidden=c(1024,1024,2048),epochs=10,

+ input_dropout_ratio=0.2,l1=1e-5,max_w2=10,train_samples_per_iteration=-1,

+ classification_stop=-1,stopping_rounds=0)

Figure 1. Parallel Scalability

Table VII for 10 epochs on MNIST with validation classification error 0.01990

Example 2:

Initialize the local host and check the cluster information:

>h2o.init(ip="localhost",port=54321)

>h2o.clusterInfo()

Data manipulation can be done in three commands.

 as.data.frame() converts an h2o data frame into R data frame (recommended to take subsets)

 as.h2o() transfers data from R to the h2o instance

 str.H2oFrame() returns the elements of the new object to confirm success

The following statements import the data set and display the summary. From here, we can find the number of flights by

airport, number of flights per month, and highest cancellation per month. Once we train the data, we can predict the

delay or cancelation depending upon environmental conditions.

>airlinesURL="https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv"

>airlines.hex=h2o.importFile(path=airlinesURL,destination_frame="airlines.hex")

> summary(airlines.hex)

To detect the persistent fire activity at a given location is same as anomalies at any given location. The anomalies of

heart beats can be simulated to unusual activity in a given location data.

Importing train and test ECG data into h2o cluster:

> train_ecg <- h2o.importFile(path="http://h2o-public-test-data.s3.amazonaws.com/smalldata/anomaly/ecg_discord_train.csv",

+ header=FALSE, sep =",")

> test_ecg <- h2o.importFile(path="http://h2o-public-test-data.s3.amazonaws.com/smalldata/anomaly/ecg_discord_test.csv",

+ header=FALSE, sep =",")

> anomaly_model <- h2o.deeplearning(x=names(train_ecg), training_frame=train_ecg, activation="Tanh",

+ autoencoder = TRUE, hidden = c(50,50,50), sparse=TRUE, l1=1e-4,epochs=100)

Table VIII. Train deep autoencoder learning model

5. FRAMING THE PROPOSED PROBLEM

The unusual activity at a given place on the earth is the main focus of the problem. The particular activity may be fire,

population variation, in lighting variation, weather, and environmental changes. Brightness lights on earth at night

digitally recorded by DMSP satellite [19]. The report helped for future researchers to study the light effects and analysis

of images. Christopher presented the Night-time fire or light and how they relate to population globally [20]. The results

present for minimum values for population detection may not apply in the continuous growing places. Huang et al. [21]

did meta-analysis DMSP/OLS nighttime light images, literature review and summarized standard methods and

difficulties. Christopher et al. [22] presented global satellite map of nighttime lights linked to population changes and

economic development. NOAA technical report NESDIS 142 [23] provide the guide for visible, infrared imaging

radiometer suite (VIIRS).

We We downloaded the climate data for 2016 of Baton Rouge, LA, from NOAA (National Centers for Environmental

information). The data include many parameters including wind, snow, and temperature. The following settings are used

to calculate the summary.

BatonRouge.hex=h2o.importFile(path="summary.csv",destination_frame=" BatonRouge.hex ")

summary(BatonRouge.hex)

The NOAA data temperatures for one year (Figure 2) shows the maximum temperature observed are days 169 to 274

of the year and minimum is first 60 days and last 30days of the year (maximum and verify from .

Figure 2. Temperature Variance

0

50

100

150

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

Chart Title

TMAX TMIN TOBS

we demonstrate the classification and automatic recognition of objects. Further, we use the h2o deep learning package

in R Language to classify the NOAA VIIRS Night fires data to detect the persistent fire activity at a given location

around the globe.

6. DISCUSSION OF RESULTS

7. CONCLUSIONS AND FUTURE RESERACH

ACKNOWLEDGEMENTS

The research work was supported by the AFRL Collaboration Program – Sensors Research, Air Force Contract FA8650-

13-C-5800, through subcontract number GRAM 13-S7700-02-C2. The author wishes to express appreciation to Dr.

Connie Walton, Director of Sponsored Programs Grambling State University for her continuous support in research.

REFERENCES

[1] E. LeDell., “High Performance Machine Learning in R with H2o”, ISM HPC on R workshop, Tokyo, Japan, 2015.

[2] Amir Arno Candel, Viraj Parmar, Erin Ledell, and Anisha Arora., “Deep Learning with H2o”, http://h2o-

release.s3.amazonaws.com/h2o/master/3420/docs-website/h2o-docs/booklets/DeepLearning_Vignette.pdf, 2016

[3] Erin LeDell., “High Performance Machine Learning in R with H2o”, October 2015, Tokyo, Japan,

http://www.stat.berkeley.edu/~ledell/docs/h2o_hpccon_oct2015.pdf

[4] Arno Candel and Viraj Parmar., “Deep Learning with H2o”, http://h2o.ai/resources/, February 2015

[5] Spencer Aiello, Eric Eckstrand, Anqi Fu, Mark Landry, and Patrick Aboyoun (edited by Jessica Lanford),

“Machine Learning with R and H2o”, http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/RBooklet.pdf,

http://h2o-release.s3.amazonaws.com/h2o/master/3420/docs-website/h2o-docs/booklets/DeepLearning_Vignette.pdf
http://h2o-release.s3.amazonaws.com/h2o/master/3420/docs-website/h2o-docs/booklets/DeepLearning_Vignette.pdf
http://h2o.ai/resources/
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/RBooklet.pdf

December 2016.

[6] Bernd Bischl, etc., “mlr: Machine Learning in R”, Jr. of Machine Learning Research, 17, 2016, pp. 1-5.

[7] Brett Lantz., “Machine Learning with R”, 2nd edition, Packt Publishing Ltd., 2015

[8] Michal Malohlava, Alex Tellez, and Jessica Lanford., “Machine Learning with Sparkling Water: H2o + Spark”,

http://h2o-release.s3.amazonaws.com/h2o/master/3293/docs-website/h2o-

docs/booklets/SparklingWaterVignette.pdf

[9] http://docs.h2o.ai/h2o/latest-stable/index.html

[10] Patrick Aboyoun, Spencer Aiello, Anqi Fu and Jessica Lanford., “Fast Scalable R with H2o”, published by H2o.ai,

Inc., 2015.

[11] Se-Jeong Park, Kook-Hyun Choi, Jeawon Park, and Jong-Bae Kim., “A Study of Spatial Analysis Using R-Based

Deep Learning”, Int. J. Software Engineering and its Applications, Vol. 10, No. 5 (2016), pp. 87-94.

[12] Cliff Click, Jessica Lanford, Michal Malohlava, Hank Roark, and Viraj Parmar., “Gradient Boosted models with

H2o’s R Package”, http://h2o.ai/resources/, Sept 2015.

[13] Cliff Click, Michal Malohlava, Arno Candel, Hank Roark, and Viraj Parmar (edited by Jessica Lanford)., “Gradient

Boosting Machine with H2o”, http://h2o.ai/resources/, Oct 2016.

[14] Joel Horwitz, Classification using Generalized Linear Models, Gradient Boosting Machines, Random Forests and

Deep Learning in H2O”, http://h2o.ai/resources/, 2014

[15] Sara Landset, Tagi M. Khoshgoftaar, Aaron N. Richter and Tawfiq Hasanin., “A survey of open source tools for

machine learning with big data in the Hadoop ecosystem”, J. of Big Data, a Springer open Journal, 2015, pp. 2-24.

[16] Chaitra D.B., and Bindiya, M.K., “Approaching Machine Learning Using H2o and Inspecting it on Apparel

Industry Using D3 Visualization”, Int. J. of Advanced Networking & Applications (IJANA), ICICN 2016, CSE,

RRCE, pp. 526-531.

[17] Dirk Eddelbuettel., “R and High-Performance Computing”, Creative Commons Attribution-ShareAlike 4.0

International License, October 2015.

[18] Drew Schmidt., “High Performance Computing with R”, nimbios.org/tutorials/TT_RforHPC, February 2015.

[19] Thomas A Croft., “The Brightness of Lights on Earth at Night, Digitally Recorded by DMSP Satellite”, Prepared

by U.S. Geological Survey, August 1979.

[20] Christopher N. H. Doll., “Population Detection Profiles of DMSP-OLS night-time imagery by region of the world”,

Proceedings of the 30th Asia-Pacific Advanced Network Meeting, August 2010, Hanoi, Viatnam.

[21] Qingxu Huang, Xi Yang, Bin Gao, Yang Yang, and Yuanyuan Zhao., “Application of DMSP/OLS Nighttime Light

Images: A Meta-Analysis and a Systematic Literature Review”, Remote Sensing, 2014, pp. 6844-6866.

[22] Christopher D. Elvidge, Feng-Chi Hsu, Kimberly E. Baugh, and Tilottama Ghosh., “National Trends in Satellite

Observed Lighting: 1992-2012”, Chapter in “Global Urban Monitoring and Assessment Through Earth

Observation” Editor Qihao Weng. CRC Press. 2013.

[23] Changyong Cao, et al. “Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s

Guide”, NOAA Technical Report, NESDIS 142, September 2013.

http://h2o.ai/resources/
http://h2o.ai/resources/
http://h2o.ai/resources/
http://h2o.ai/resources/

