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Abstract In recent years, data centers play an important
role in academia and industry for supporting various services
and applications. Compared with other IP networks, data
center networks have some special features such as many-
to-one communication pattern with high bandwidth, low
latency, auto-scaling, shallow buffered switches and multi-
rooted tree topology. Owing to these special features of data
center networks, traditional TCP suffers from severe perfor-
mance degradation. For improving the performance of TCP
in data center networks, various solutions have beenproposed
in recent years. This article presents a comprehensive survey
of existing transport layer solutions proposed for mitigating
the problems of TCP in data center networks. The objective
of this article is threefold: to discuss about the issues of TCP
in data center networks; to introduce various transport layer
solutions and finally to compare and discuss the challenges of
existing solutions proposed for improving the performance
of TCP in data center networks.

Keywords Data center networks · TCP · Performance
degradation · Issues · Survey

1 Introduction

Data center networks are the cost-effective communication
infrastructure used in a data center for storing large vol-
umes of data and providing efficient service applications [1].
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Data centers are becoming essential computing platforms
for IT enterprises to provide real-time response when carry-
ing out various operations such as system configuration and
query services [2,3]. Compared with other IP networks, data
center networks have some special features such as many-to-
one communication pattern with high bandwidth, freedom
of deciding the endpoints of traffic flows, low round trip
time (RTT) and the regularity of the topology [4]. Recently,
many large data centers have been built to support hun-
dreds of thousands of users, to host online services such
as web query, distributed file system, distributed execution
engine and structured storage system and also to provide
the infrastructure services such as MapReduce, Bigtable and
Dryad [5–7]. The current data centers are based on com-
modity switches for the interconnection network and their
supporting storage based on high- speed links to a very con-
nected world [8].

Figure 1 shows the architecture of a current data center net-
work [9]. This three-tier architecture consists of three levels
of switches such as core at the root, aggregation at the middle
and edge switches connecting to the hosts for receiving and
sending back the data from the client and servers. The main
advantage of this architecture is that they are fault tolerant and
can be scaled easily. Typically, the edge switches provides
connectivity to thousands of servers which are accommo-
dated into racks using 1Gbps links capacity. These switches
are further interconnected to multiple aggregate switches
using 10Gbps links capacity for redundancy. The aggrega-
tor switches are connected to core switches which provide
security to connections and forward the requested data from
the servers to the clients. The performances of data center
networks are significantly affected by the communication
network, since all the applications are distributed in nature.
Generally, the applications of data centers create large data
flows and small control flows that require high throughput
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and low delay. The traffic in data center networks is quite
bursty and unpredictable [10].

When the size of servers is large, traffic congestion can
occur which results in the sudden loss of packets. In order to
design efficient networking mechanisms for data centers, the
analysis of the characteristics of data center traffic is impor-
tant. Typically, there are three classifications for data centers:
cloud-computing, private enterprise and university campus.
In all data centers, packet size is the common traffic charac-
teristic, while an application and traffic flow vary according
to the classification of data centers. In [10], the studies show
that the main characteristics of data center traffic are: appli-
cations, locality of the traffic flow, the duration and size of
traffic flow, concurrent traffic flows and link utilization. The
details about the characteristics of data center traffic can be
found in [10] for interested readers.

Recent research studies [5,11,12] have shown that major-
ity of the network traffic in data centers are contributed by
the transport protocols. Although there are two transport pro-
tocols, TCP and UDP, in data center networks, most of the
traffic flows over the data center are TCP-based. According
to the special features of data center networks, the transport
protocol needs some desirable properties such as fast conver-
gence and rare packet losses [13]. However, the conventional
TCP does not meet these properties of data center networks.
This is because when TCP deployed in data center networks,
TCP faces some important issues such as TCP Incast, Out-
cast, latency and packet reordering. To resolve these issues,
recently, various solutions have been proposed for data center
networks.

This article surveys the new transport protocols proposed
for mitigating the TCP issues in data center networks. The
objective of this article is threefold: to discuss about the issues
of TCP in data center networks; to introduce various trans-
port layer solutions and finally to compare and discuss the
challenges of existing solutions proposed for improving the
performance of TCP in data center networks.

The remainder of the survey is organized as follows. In
Sect. 2, we present a detailed description about the issues
of TCP in data center networks. In Sect. 3, we discuss the
recent TCP variants proposed for data center networks for
mitigating the issues of TCP and present the comparison of
the surveyed transport protocols in terms of some important
metrics. Finally, Sect. 4 concludes our paper.

2 Issues of TCP in data center networks

As we mentioned in the above section, the performance of
TCP is not satisfactory in data center networks due to its
special features when compared to other IP networks. In this
section, we discuss about the important issues as shown in
Fig. 2 that TCP faces when deployed in data center networks.

2.1 TCP Incast

TCP Incast is one of the crucial performance issues in
data center networks [14,15]. It is a catastrophic through-
put collapse that occurs when a large number of servers
send data simultaneously to a single receiver with high
bandwidth and low round trip time. It has been defined
as the pathological behavior of TCP that results in gross
under-utilization of the link capacity in various many-to-one
communication patterns [16]. TCP Incast was first found in
the distributed storage system Panasas [14]. Figure 3 shows
a typical TCP Incast scenario of data center networks. In this
many-to-one communication pattern, the client sends barrier-
synchronized data requests (i.e., the client will not send data
requests until all of the senders completed the current request)
using a large logical block size tomultiple servers via a switch
for increasing the performance and reliability. Each server
stores a fragment of data block, which is referred to as Server
Request Unit (SRU).

All the servers take approximately the same amount of
time for sending the requested data to the client, which results
in the overflow of buffers at the bottleneck link, and this
leads to large amount of packet losses and timeouts, termed
as TCP Incast throughput collapse problem. A nice summary
of the preconditions for TCP Incast is stated in [17], where
the preconditions are listed as follows:

• High-bandwidth, low-latencynetworkswith small switch
buffers
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• Clients that issue barrier-synchronized request in parallel
• Servers that return a relatively small amount of data per
request

2.1.1 TCP timeouts

By experimental studies, researchers have found that TCP
timeouts are the root cause of Incast problem in data cen-
ter networks [18–20]. TCP timeouts occur due to fast data
transmissions frommultiple serverswhich easily overfills the
switch buffers resulting in heavy packet losses. These time-
outs impose delays of hundreds of milliseconds in networks
with round trip times in the 10 or 100s of microseconds
can reduce the throughput by 90%. In addition, the frequent
timeouts can harm the performance of latency-sensitive data
center applications [17]. As shown in Fig. 3, in data cen-
ter networks, the timeouts are mainly caused by the loss of
packets from the tail of data blocks (LTTO), from the head
of data blocks (LHTO) and the loss of retransmitted packets
(LRTO).

LTTO These timeouts are caused due to the lack of insuf-
ficient duplicate acknowledgments. Figure 4a presents an

example of timeouts that occur due to packet losses from
the tail of data block. Consider that the sender sends 5 pack-
ets using the congestion window size of 5. Among those,
the packets 3 and 4 are lost. The sender will not receive
three duplicate acknowledgments (DACK) for triggering fast
retransmission for recovering the lost packets 3 and 4 since
only one packet left from the end of the life of TCP flow. As a
result, the sender needs to wait for the expiration of timeouts.
Such situation is not unavoidable in data center networks.

LHTO If all the packets from a data block are dropped, the
receiver cannot send any acknowledgments for the transmit-
ted data as shown in Fig. 4b. As a result, the TCP sender can
detect a packet loss after the long idle period of the expira-
tion of retransmission timer. Usually, in data center networks
these types of timeouts happen due to the large summation
and big variance of the initial size of congestion window
when the number of senders becomes large [20]. That is,
some sendersfinish their transmissions earlier thanothers and
needs to wait for other senders to finish their transmissions.
As a result, the senders without finishing data transmission
have large send window size. On the next data block trans-
missions, all the senders inject packets using their whole
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windows to the small switch buffer, which usually causes
lots of packet loss. If a flow losses its whole window, then it
will enter a timeout period [18].

LRTO Another important type of timeout is timeouts due
to the loss of retransmitted packets. When the TCP sender
detects a packet loss via TCP loss detection mechanism,
it retransmits the lost packet immediately. However, if the
retransmitted packet is lost again as shown in Fig. 4c, the
sender needs to wait until the expiration of retransmission
timer due to insufficient duplicate acknowledgments. The
loss of retransmissions is not rare in data center networks
[19]. As a result for improving the performance of TCP, the
senders need a mechanism for detecting the loss retransmit-
ted packets.

2.2 TCP Outcast

TCPOutcast is another important issue for degrading the per-
formance of TCP in data center networks. When a large and
small set of flows share the same bottleneck link with multi-
rooted tree topology, the throughput of TCPs with small set
of flows obtain lower throughput than TCPs with large set
of flows, which will lead to severe unfairness. This phenom-
enon has been termed as TCPOutcast and is first described in
[21]. One of the main reasons of the TCP Outcast problem is
‘Port blackout.’ That is, a series of packets enter into the same
switch from different input ports and compete for the only
output port. In this case, some of the packets get dropped
when the queue in the output port becomes full. Figure 5
presents the problem of TCP Outcast due to port black out
problem.

Consider three packets say PA1, PA2 and PA3 arriving
at port A and PB1, PB2 and PB3 arriving at port B. These
asynchronously arrived packets from the two input ports A
and B are competing for the output port C which is full due to
packets PC1, PC2 and PC3. Due to the asynchronous nature,
one port may have packets slightly ahead of others. As a

result, when a packet dequeued from the output port C, the
first arrived packet enters into the occupied space of port C
and the next incoming packet gets dropped. In this example,
the packet PB1 is enqueued, and the packet PA1 is dropped.
This result in a sequence of packets gets dropped from one
input port, and thus, that input port suffers a blackout. As a
result, the input port suffers from blackout and degrades the
throughput. In addition to port blackout problem, in [22] the
authors found another reason for the TCP Outcast problem
which is mainly caused by the variations in RTT of different
TCP flows. That is, the flows with large RTT are less affected
than the flows with small RTT.

2.3 Latency

Here, we explain about the latency issue inside a data center
network. The main culprit of latency in data center networks
is the long queuing delay in switches which is caused by the
TCP flow characteristics of data centers [23]. Specifically,
data center networks carry two types ofTCPflows: short lived
and long lived, with sizes that typically ranging from 2KB
to 100MB [24]. Among this, short-lived flows are latency
sensitive, while long-lived flows are latency insensitive that
can transfer bulky traffic which causes to grow the bottleneck
queue until the packets get dropped. As a result, when long
and short flows share the same bottleneck queue, the short
flows experience increased latency due to queue build up by
long flows [25]. The result is that large number of packet
drops and frequent retransmissions.

As a consequence of frequent retransmissions due to
packet drops, TCP sender needs to reduce the size of con-
gestion window and needs more RTTs to complete the flow.
In addition to confirm packet drops, the retransmission timer
needs to be larger than the largest possible RTT, which is too
long for a TCP flow to meet its deadline [23]. Furthermore,
in data center networks the majority of the traffic is bursty,
and hence, packets of short-lived TCP flows get dropped fre-
quently.
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2.4 Delayed ACK

The delayed ACKmechanism of TCP attempts to reduce the
amount of ACK traffic in the reverse path of the network.
However, in data center networks the delayed ACK mecha-
nism causes frequent timeouts due to RTTs which is in the
order of 10 or 100s of microseconds. This leads to reduction
in the throughput. For example, Fig. 6a shows the commu-
nication of sender and receiver with delayed ACK disabled.
In this case, the receiver sends ACK for each packet and can
recover the lost packet by triggering fast retransmissions. In
this example, the sender sends twopackets P1 andP2.Among
those, the packet P2 was lost. When the receiver receives the
packet P1, it sends an ACK for packet P2 immediately. As
a result, the sender can send two more packets P3 and P4.
When the receiver receives those packets, it sends an ACK
for getting the lost packet P2.When the sender receives three
dupacks, it triggers fast retransmissions and retransmits the
lost packet immediately. However, in the case of TCP with
delayed ACK enabled, the sender needs to wait more than
40ms for recovering the lost packet as shown in Fig. 6b and
this will affect the performance of TCP in data center net-
works [17,26,27] in terms of spurious retransmissions and
timeouts.

2.5 Single-path TCP

Single-path TCP is another important issue for achieving
higher utilization of available bandwidth in data center net-
works. In data center networks, most of the applications use
single-path TCP. As a result, the path gets congested easily
and cannot utilize the available bandwidth fully,which results
in the degradation of throughput and severe unfairness. For
overcoming this problem, recentlymulti-path TCP (MPTCP)

was proposed in [27]. The advantage of this approach is that
the linked congestion controller dynamics in each MPTCP
end system can act on very short time scales to move traf-
fic away from the more congested paths and place it on the
less congested paths. As a result, the packet loss rates can be
minimized and thereby improve the throughput and fairness
of TCP in data center networks.

3 Existing transport protocols for data center
networks

This section surveys the existing transport protocols for data
center networks. For our survey, we selected a total of 25
transport protocols proposed for solving the issues of TCP
in data center networks. We classified these protocols with
respect to different TCP issues such as TCP Incast, Outcast
and latency as shown in Fig. 7. Among those, 16 transport
protocols are able to mitigate the problem of TCP Incast, 3
transport protocols are able to solve the problem of TCPOut-
cast, and 10 transport protocols are able to solve the problem
of TCP flow completion times. In the following subsections,
we will present each of the transport protocols based on the
classification of different TCP issues by highlighting their
advantages and disadvantages. First, we discuss the proto-
cols proposed for mitigating the TCP Incast problem in data
center networks.

3.1 Protocols for solving TCP Incast issue

As we mentioned in Sect. 2, TCP Incast is the degradation in
throughput due to the simultaneous transmission of TCP data
streams from thousands of worker nodes to one aggregator.
As shown in Fig. 7, so far out of 25 protocols, 16 transport
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protocols are proposed for solving TCP Incast issue in data
center networks. We classified these protocols in terms of
their modifications with respect to conventional TCP and
mechanisms for handling different types of TCP timeouts as
they are the root causes of TCP Incast.

3.1.1 FGRTO

Generally, in the Internet, the default value of TCPminimum
retransmission timeout (RTO) is 200ms, while the propaga-
tion round trip delay in a data center network is less than
1ms. As a result, in data center networks, when the client
requests data from multiple servers, any flow that experi-
ences an RTO will be delayed by 200ms, resulting in poor
query latency. This imbalance between the minimum TCP
RTO and the latencies in the data center networks results
in the significant degradation of the performance of TCP. In

[17], the authors found that eliminating minimum RTO and
enabling microsecond-granularity TCP RTO can success-
fully avoid TCP Incast collapse in data center applications.
In addition, the authors recommended that for achieving
full performance delayed acknowledgment (ACK) should be
disabled. This is because, in data center environment, for
servers using fine-grained RTOs, the retransmission timer
may expire long in the presence of delayed ACK mecha-
nism. As a result, RTO occurs at the server and retransmit the
unacknowledged packet unnecessarily without observing the
coarse-grained 40ms delayedACK configuration. Themajor
advantage of this approach for avoiding TCP Incast collapse
is that the solution is practical, safe and effective for use in
data center environment. Also, this approach can be easily
deployed, since it requires only three changes to Linux TCP
source code such as microsecond resolution time for track-
ing RTT, redefinition of TCP constants and the replacement
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of low-resolution timers with high-resolution timers to sup-
port microsecond RTOs. Although the solution requires only
three changes to the Linux TCP source code, some operating
systems not supported the required kernel changes for imple-
menting the software timers. In addition, when the servers
communicate with clients outside the data center network,
the fine-grained RTO value can be harmful.

3.1.2 DCTCP

Data center TCP (DCTCP) [28] is a TCP-like protocol
designed to operate with very low buffer occupancies, with-
out the loss of throughput for data center networks [29]. The
goal ofDCTCP is to achieve high burst tolerance, low latency
and high throughput, primarily by reacting to congestion in
proportion to the extent of congestion. DCTCP algorithm
consists of three components: First, DCTCP employs a very
simple active queue management scheme which ensures that
sources quickly notified the overshoot of buffer queue. The
simple marking scheme of DCTCP marks the arriving pack-
ets with the Congestion Experienced (CE) code point as soon
as the queue occupancy exceeds a fixed small threshold ‘K.’
Second,DCTCPconveys the exact sequence ofmarked pack-
ets back to the sender by sending ACK for every packet,
setting the ECN-echo flag if and only if the packet has a
marked CE code point. Third, DCTCP controls the sender
for reducing the size of congestion window according to the
fraction of marked packets based on the congestion status in
the network. The minor modifications of the original design
of ECN help the DCTCP senders to react early to congestion,
which leads to improve the throughput performance than con-
ventionalTCP,while using90% less buffer space. InDCTCP,
the usage of very small buffer space affects the size of con-
gestion window. As a result, the congestion window reduces
to one maximum segment size frequently due to the expira-
tion of timeouts. The experimental result of DCTCP shows
that when the number of flows is relatively large, DCTCP
cannot deal with the TCP Incast problem and the throughput
falls back to that of conventional TCP. Moreover, DCTCP
requires the modification of ECN settings at the switch as
well as changes in the end servers. It is not clear that how
DCTCP tunes the ECN threshold for estimating the instant
queue length to achieve the high performance of TCP using
very low buffer occupancies.

3.1.3 TDCTCP

An improved version of DCTCP called TDCTCP [30] was
developed, specifically designed to provide high through-
put without significantly increasing the end-to-end delay.
TDCTCP changes were introduced in the DCTCP’s con-
gestion control algorithm and in the dynamic delayed ACK
calculation of TCP retransmission timer. TDCTCP modified

the congestion control mechanism of DCTCP algorithm to
control the congestion window in the congestion avoidance
state according to the level of congestion in the network.
This modification helps the sender to react better to the
current congestion state and to provide better throughput.
Moreover, TDCTCP resets the congestion indicator to the
value of 0 after every delayed ACK timeout. This ensures
that TDCTCP does not use a stale value of congestion indi-
cator. If the stale value of congestion indicator remains very
high, it hinders the increment of congestion window and
hence causes successive delayed ACK timeout. In original
DCTCP, the old value of congestion indicator gives an incor-
rect estimation of the current network status. As a result, the
congestion window of DCTCP is affected by the old value
which results in a high variation in the size of DCTCP’s con-
gestion window. This high variation can be prevented with
the help of TDCTCP modifications to the congestion indi-
cator. Furthermore, TDCTCP calculates the delayed ACK
timeout dynamically to better adapt to the network condi-
tions for achieving good fairness. These three modifications
help the TDCTCP to achieve good fairness in data center net-
works. Although TDCTCP can improve the performance of
data centers by mitigating the TCP Incast problem, it needs
to modify the sender, receiver and switches in the network.
The experiment results show that in data center network with
10Gbps links, the queue length of TDCTCP is higher than
that of DCTCP. This affects the increment in the end-to-end
delay of packets. In addition to the network simulation, a test-
bed experiment also need to be considered for confirming the
efficiency of TDCTCP over DCTCP.

3.1.4 DT-DCTCP

Double-threshold DCTCP (DT-DCTCP) [29] improves the
DCTCP algorithm by introducing a newmarkingmechanism
for detecting the network congestion. As shown in Fig. 8, DT-
DCTCP uses two thresholds ‘K1’ and ‘K2’ to share the load
of a single threshold ‘K’ which is used in DCTCP. Among
the two thresholds, ‘K1’ is used to start the ECN marking
in advance, and the threshold ‘K2’ is used to stop the ECN
marking. The original intention of double threshold instead
of a single threshold is to control the oscillation of queue
length which is caused by the nonlinear control scheme at the
switches. When the queue length increases beyond the lower
threshold ‘K1’, the network is having a potential congestion,
and should set CE to inform the senders to decrease their
window size.

That is, in DT-DCTCP the packet will be marked when
the queue length increases to ‘K1’. On the other hand, when
the queue length decreases under the high threshold ‘K2’, the
switch should release the message of congestion. By using
the describing function (DF) approach,DT-DCTCP analyzed
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that it has more stability in queue than DCTCP and thereby
solved the issue of TCP Incast in data center networks.

3.1.5 TCP-FITDC

Zhang et al. [31] proposed an adaptive delay-based con-
gestion control algorithm, named TCP-FITDC to tackle the
problem of TCP Incast in data center applications. The main
goal of this design is to achieve high throughput, low latency
and fast adaptive adjustment for TCP when deployed in data
centers. To achieve this goal, TCP-FITDC proposed two
schemes: marking scheme and adjusting scheme. The first
scheme is motivated by DCTCP. TCP-FITDC utilizes the
modified packet marking mechanism defined in [28] from
ECN as an indication of network buffer occupancy and buffer
overflow of the switch. If the queue length is greater than
a single threshold value ‘K,’ the sender receives a marked
ACK, but unmarked otherwise. Using this scheme, the sender
is able to maintain the queue length of the switch by detect-
ing the ECN-echo bits in ACKs. The second scheme of
TCP-FITDCadjusts the sender’s congestionwindow for con-
trolling the sending rate based on two classes of RTT values:
RTT values without ECN-echo flag and RTT values with
ECN-echo flag. Whenever the sender receives a RTT value
without ECN-echo flag, the sender increases its congestion
window by assuming that the level of switch buffer does not
exceed the threshold value. On the other hand, whenever the
sender receives a RTT value with ECN-echo flag, the sender
decreases the congestion window size to reduce the buffer
length of the switch.

3.1.6 DIATCP

A new deadline- and Incast-aware aggregator-based trans-
port protocol (DIATCP) [32], is designed for controlling the
peer’s sending rate directly to avoid the TCP Incast con-
gestion and to meet the cloud application deadline. The key
idea of DIATCP is that the aggregator node may monitor all
the incoming traffic to itself. DIATCP works only for the

incoming traffic from peers to the aggregator, and the outgo-
ing traffic from the aggregator is managed by the destination
nodes of the traffic. In DIATCP, each application connec-
tion is represented by an abstract node, which includes the
information such as the data size, application deadline and
allocated DIATCP window size. Whenever a connection is
created, DIATCP inserts a node to the connection list and the
node is deleted from the connection list when the connec-
tion is closed. After that, the allocated DIATCP window size
is updated whenever a change occurs in the connection list.
For doing this, DIATCP developed a new global window
allocation scheme that allocates the global window based
on the deadline and data size. By accessing the information
of each node, the advertisement window in the TCP ACK
header is set to the allocated window size and can control the
total amount of traffic in order not to overflow the bottleneck
link. The implementation and the deployment ofDIATCP are
easy since it does not require any support from the network
switches.

3.1.7 IDTCP

Incast decrease TCP (IDTCP) [33] is proposed to mitigate
the TCP Incast problem by using the following strategies:
(1) constantly monitoring the congestion level of the link, (2)
slowing down and dynamically adjusting the congestionwin-
dow growth rate and (3) setting the congestion window to 1
if the link is totally congested. For monitoring the congestion
level of the link, instead of using the queuing packet, IDTCP
propose a delicate and effective mechanism for continuously
estimating the bottleneck status of the network. For getting
the congestion level of the link, IDTCP measures the mini-
mum and average RTT values. According to the congestion
level of the link, IDTCP slows down and dynamically adjusts
the congestion window growth rate. The congestion window
growth rate of IDTCP is a discrete exponential increase with
RTT and the base. With the increase in the congestion level,
the congestion window growth rate of IDTCP decreases. If
the propagation delay is equal to the queuing delay, IDTCP
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assumes that the link is totally congested and immediately
sets the value of congestion window to 1. In this way, IDTCP
can allow as many as possible concurrent servers to join into
the network.

3.1.8 New TCP

Zheng et al. [37] found that the root cause of TCP Incast
is the drop tails induced by TCP congestion control algo-
rithm based on packet losses. By considering the root cause,
the authors designed a new delay-based TCP congestion
control algorithm based on FAST TCP, for improving the
performance of TCP in data center networks. The design
of new TCP contains three parts: slow start, congestion
avoidance and retransmission mechanism. In the slow-start
phase of new TCP, the sender increases its congestion win-
dow (W) based on queueing delay and enters the congestion
avoidance stage if the queueing delay detected exceeds the
slow-start threshold (ssthreshold). Further, the authors sug-
gested a suitable ssthreshold value which is equal to 20µs. In
the congestion avoidance stage of new TCP, the sender peri-
odically updates its congestion window based on queueing
delay. Further, for each flow, new TCP maintains a certain
queue length at the switch buffer and controls the summation
of queue length does not exceed the buffer size. Finally, new
TCP adopts the retransmissionmechanism of TCPNewReno
as it is effective and robust in data centers. By using these
three parts, new TCP avoids the drop tails and hence avoids
the problem of TCP Incast.

3.1.9 ICTCP

Wu et al. [35] studied the problem of TCP Incast in detail by
focusing on the relationship between TCP throughputs, RTT
and receive window. The authors observed that the receiver
side of TCP is able to know the throughput of all TCP con-
nections and the available bandwidth.

Further, the receiver can control the burstiness of all the
synchronized senders by adjusting the receivewindow size of
each TCP connection. In addition, the frequency of receive-
window-based congestion control should be made according
to the per-flow feedback-loop delay independently. Based
upon these observations, the authors proposed an Incast con-
gestion control for TCP (ICTCP) on the receiver side for
preventing TCP Incast congestion. The main aim of ICTCP
is to reduce the packet loss before Incast congestion instead
of recovery after loss. In this regard, to perform congestion
control on the receiver side, ICTCP measures the available
bandwidth on the network interface and provide a quota for
all incoming connections to increase the receiver window for
higher throughput. The authors state that for the estimation
of throughput live RTTs are necessary as they found that even
if the link capacity is not reached, RTT in a high-bandwidth,

low-latency network improves with throughput. Similar to
the TCP congestionwindow adjustment at the sender, ICTCP
adjusts the receive window based on the ratio of the dif-
ference between the measured and expected per-connection
throughputs over the expected throughput, as well as the last
hop available bandwidth to the receiver. When the ratio is
small, ICTCP increases its receive window, but decreases
otherwise.

3.1.10 IA-TCP

Hwang et al. [36] proposed an end-to-end congestion control
algorithm, named Incast-avoidance TCP (IA-TCP), which
is able to control the total number of packets injected into
the network pipe to meet the bandwidth-delay product. IA-
TCP designed to operate only at the receiver side, which
control both the window size of senders and ACK delay.
For avoiding the TCP Incast congestion, IA-TCP regulates
the sending rate of the senders by using the link capacity
measurements obtained from the transport layer instead of
measuring live RTT and adjust the window size by using the
acknowledgment packet control method. IA-TCP algorithm
is performed as follows: First, the receiver counts the total
number of TCP connections that share the same bottleneck
link. Whenever the receiver sends an ACK, it calculates the
advertise window for controlling the total number of packets
injected by senders. Then, the receiver induces ACK delay
for each packet to prevent the aggregate data packet rate from
exceeding the link capacity, and gives uniform random delay
for the firstACK. Finally, if theACKdelay is larger than zero,
the ACK with advertise would be sent after the expiration of
delay timer.

3.1.11 MTCP

Fang et al. [34] proposed a prompt congestion reaction
scheme for data center networks called MTCP with consid-
eration of multiple congestion points along data paths. The
key goal of MTCP is to achieve congestion control in a tran-
sient period of time. For achieving this goal, MTCP reacts to
congestion in proportion to the extent of network congestion
and removing RTT factor in rate adjustment cycles. For sig-
naling congestion, MTCP utilized ECN field to monitor each
congestion point that a packet has passed. When the sender
receives a marked ACK, it calculates the congestion status
(CS) value according to the number it carries along, accu-
mulates CS value within a certain time interval and adjusts
its congestion window with regards to an estimator called α.
The calculation of α is as follows:
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α ← (1 − g) × α + g × R (1)

where g is a constant and R indicates the feedback informa-
tion of network congestion. Using α, MTCP sender reduces
its congestion window according to Eq. (2),

cwnd ← cwnd × (1 − α/2) (2)

where the higher value of α indicates heavy congestion and
reduces the size of congestion window significantly, oth-
erwise reduces slightly. In addition to above mechanisms,
MTCP designs two more optional mechanism, namely sat-
uration regulation and congestion prediction. In saturation
regulation, if all the switches on a path are congested, the
senders of such path reduce its congestion window sig-
nificantly. On the other hand, the mechanism congestion
prediction is used to avoid lags between congestion detec-
tion and rate reduction.

3.1.12 GIP

Zhang et al. [20] proposed a simple and effective solution
called Guarantee Important Packets (GIP) for the applica-
tions with the problem of TCP Incast in data center networks.
The key idea behind GIP is making TCP aware of the bound-
aries of the stripe units, and reducing the size of congestion
window of each flow at the start of each stripe as well as
redundantly transmitting the last packet of each stripe unit.
For achieving the goal, GIP modified TCP at the sender
side. Since timeout is the root cause of TCP Incast issue,
the authors observed that two types of timeouts should be
avoided for improving the throughput. First, the timeouts
caused by fullwindow losses and second, the timeouts caused
by lack of duplicate ACKs. In this regard, GIP proposed two
mechanisms for eliminating the two kinds of timeouts. One is
reducing the initial congestion window of each sender at the
head of the strip unit for avoiding full window loss, and other
is redundantly transmitting the last packet of a stripe unit for
avoiding the timeouts due to insufficient duplicate ACKs.
TCP-GIP modifies only the sender side of the standard TCP;
thus, it can be easily implemented in real-time data center
environments. The redundant transmission of some of the
last three packets for avoiding the lack of ACKs can not only
generate more ACKs but also improve the probability that
the last three packets successfully reach the receiver before
the timeouts occur due to lack of ACKs.

3.1.13 LTTP

Jiang et al. [39] proposed a UDP-based transport protocol,
namely LTTP, to tackle the problem of TCP performance
degradation due to many-to-one communication pattern of

data center networks. LTTP protocol improves Luby trans-
form code to guarantee reliable UDP transmission from
servers to the client by using forward error correctionmethod
and to restore the original data without requesting for retrans-
missions. In addition, for congestion control LTTP employs
the TCP friendly rate control (TFRC) protocol to adjust
the traffic sending rate at servers and to maintain reason-
able bandwidth utilization. This congestion control technique
ensures that the sender can send data continuously even if the
network is congested rather than stopping sending data for a
long time.

3.1.14 SAB

Zhang et al. [13] observed that switch buffer sizes are much
larger than the bandwidth-delay product. Based on this obser-
vation, the authors proposed a new transport protocol called
SAB which allocates switch buffer space to the senders for
explicitly determining the congestion window of each flow.
The authors stated that SAB has two main advantages: First,
the SAB flows can converge to their fair bandwidth in one
RTT. As a result, the flow completion time of short flows
can be reduced significantly. Second, it rarely loses packets.
As shown in Fig. 9(a), for each flow, SAB allocates only
one packet by reducing the size of maximum segment at the
sender. Hence, SAB loses packet rarely. In SAB, whenever
the sender sends data packets to the receiver, the switches
compute the congestion window for each passing flows. The
measured value of congestionwindow conveyed by the head-
ers of data packets and then returned to the senders by the
headers of ACKs. After receiving an ACK, the senders send
packets according to the received value of congestion win-
dowas shown inFig. 9(b). Since the switch can accommodate
most of the packets, the bottleneck link will not be idle and
hence prevents packet losses.

3.1.15 PLATO

Shukla et al. [19] developed a packet labeling scheme called
PLATO, as a solution to TCP Incast throughput collapse.
PLATO improved the loss detection capabilities of TCP
NewReno by leveraging the existing three duplicate ACK
mechanisms. This helps the sender to avoid frequent retrans-
mission timeouts and thus tackles the problem of TCP Incast.
The main objective of PLATO is to prevent the loss of ACK
clock and to avoid the retransmission timeouts resulting from
retransmission losses without modifying the TCP conges-
tion control algorithm. To achieve this goal, PLATO places
a special label on certain TCP segments. The switch prefer-
entially enqueue these labeled segments. The TCP receiver
responds to labeled segments with a corresponding labeled
ACK. Whenever the sender received a labeled ACK, it again
send a labeled segment and the process repeats once every
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Fig. 9 The key idea of
SAB [13]

Fig. 10 The key idea of PAC-TCP [41]

RTT. If some or all unlabeled segments or ACKs are dropped
at the switch, the labeled segment and ACKs keep the ACK
clock alive. In this way, PLATO save the sender to avoid
retransmission timeouts and helps the sender to recover the
lost packets using fast retransmissions.

3.1.16 PAC-TCP

Bai et al. [41] proposed a proactive ACK control transport
protocol, namely PAC-TCP for taming the problem of TCP
Incast by leveraging the characteristics of data center net-
works. In [41], the authors state that they treat ACK not only
as the acknowledgment of the received packets, but also as the
trigger for new packets. Based on this, PAC proactively inter-
cepts and releases ACKs in such a way that ACK-triggered
in-flight traffic can fully utilize the bottleneck link without
causing Incast congestion collapse. The general idea of PAC
is presented in Fig. 10. PAC can eliminate the buffer flow as
shown in Fig. 10 by imposing higher delay to ACKs. How-
ever, it results in the degradation of throughput.

3.2 Comparison of TCP Incast transport protocols

We presented 16 transport protocols proposed recently for
mitigating the TCP Incast issue in data center networks.
Table 1 summarizes the comparative study of each proto-
col. Apart from the novelty of the proposed TCP variants,

we evaluate each solution using the following four main
criteria: modifications to the TCP stack, support from the
switch, congestion control algorithm and the retransmission
timeouts specifically the mechanism for avoiding three main
timeouts, namely LTTO, LHTO and LRTO, as these timeouts
are inevitable in data center networks.

Among these protocols, IDTCP, NewTCP and GIP mod-
ified only TCP sender side, while DIATCP, ICTCP, IA-
TCP and PAC-TCP modified only TCP receiver side.
As a result, these protocols are easy to deploy. On the
other hand, FGRTO, DCTCP, TDCTCP, DT-DCTCP, TCP-
FITDC, MTCP, LTTP, SAB and PLATO needs modification
on both the sender and receiver sides. In addition, except
FGRTO, DIATCP, IDTCP, NewTCP, ICTCP, IA-TCP and
GIP all other protocols needs support from switches for con-
trolling buffer overflow.

However, in data center networks modifications in switc-
hes as well as operating systems are little hard in practice,
especially in a large scale data center with huge number of
servers and switches, which is not truly practical [11,42]. In
terms of congestion control algorithms, except TCP-FITDC,
NewTCP and IA-TCP, all other transport protocols are
window-based congestion control. Being a window-based
algorithm, TCP controls the sending rate by adjusting the
congestion or receive windowwhen detecting congestion for
avoiding the overflow of switch buffer. When severe conges-
tion occurs in the network, these window-based algorithms
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Table 1 Comparison of TCP Incast transport protocols

Protocols TCP modifications Switch support Congestion control algorithm Mechanism for avoiding timeouts

LHTO LTTO LRTO

FGRTO Sender and receiver No Window-based No No No

DCTCP Sender and receiver Yes Window-based No No No

TDCTCP Sender and receiver Yes Window-based No No No

DT-DCTCP Sender and receiver Yes Window-based No No No

TCP-FITDC Sender and receiver Yes Delay-based No No No

DIATCP Receiver No Window-based No No No

IDTCP Sender No Window-based No No No

NewTCP Sender No Delay-based Yes Yes No

ICTCP Receiver No Window-based No No No

IA-TCP Receiver No Rate-based No No No

MTCP Sender and receiver Yes Window-based No No No

GIP Sender No Window-based Yes Yes No

LTTP Sender and receiver Yes Window-based No No No

SAB Sender and receiver Yes Window-based No No No

PAC-TCP Receiver Yes Window/recovery-based No No No

PLATO Sender and receiver Yes Window-based Yes Yes Yes

can reduce the value of the congestion or receivewindow size
to one MSS. Recent studies show that window-based algo-
rithms can support only limited number of servers around 65
[43–45]. As a result, in the case of large scale data centers,
window-based algorithms cannot control the sending rate due
to the high level of burstiness of traffic.

Compared with window-based congestion control algo-
rithms, delay-based algorithms can improve throughput as it
is a good source to determine the level of network congestion
[44,46]. In our survey, the transport protocols TCP-FITDC
andNewTCP are delay-based congestion control algorithms.
These algorithms estimates queuing delay variation using
RTT to signal the network congestion [46]. Based on the
queuing delay, the protocols update the size of congestion
window which helps to control the sending rate. In addi-
tion to window-based and delay-based congestion control
algorithms, the transport protocol IA-TCP proposed a rate-
based solution for mitigating the TCP Incast problem. To
meet the bandwidth-delay product, this protocol controls the
total number of packets injected into the network. For con-
trolling the sending rate, IA-TCP measured the link capacity
instead of RTT-like delay-based algorithms. However, the
recent studies show thatmeasuring bandwidth andRTT is dif-
ficult in real data center networks [13,38]. As we mentioned
earlier, timeouts are the root cause of TCP Incast problem in
data center networks, especially unavoidable timeouts due to
head packet loss, tail packet loss and retransmission losses.
Therefore, we classified the Incast transport protocols in
terms of mechanism for avoiding the three types of time-
outs. Out of 16 protocols, all protocols are able to reduce

timeouts compared with conventional TCP. However, only
three protocols are specifically designed for avoiding three
important timeouts for tackling the problem of TCP Incast.
They are NewTCP, GIP and PLATO. In case of implemen-
tation, compared with PLATO, NewTCP and GIP are easy
to deploy. This is because these two protocols need only
sender sidemodificationswithout any support from switches.
However, they do not have mechanisms for avoiding the
timeouts due to retransmission losses. In summary, it is essen-
tial to develop an easy deployable solution for tackling the
problem of TCP Incast by considering the three types of
timeouts.

3.3 Protocols for solving TCP Outcast issue

In this section, we present the transport protocols proposed
for mitigating the problem of TCPOutcast in data center net-
works. In [21], the authors stated that in data center networks,
the root cause of the TCPOutcast problem is input port black-
out at bottleneck switches which is occurring due to the tail
drop policy of the output queue. This reduces the throughput
of few flows that share the blackout input port drastically. In
our up-to-date literature review, only one transport protocol
specifically designed to solve the TCP Outcast problem.

3.3.1 TCP-CWR

In [22], Qin et al. stated that the uneven distribution of flows
with different RTTs on the physical links and the charac-
teristics of the applications which run on the data center

123



Photon Netw Commun

networks are the substantial causes of TCP Outcast problem.
Based on their observations, a window size notification-
based algorithm, calledTCPcongestionwindowreplacement
(TCP-CWR) was proposed for solving TCP Outcast prob-
lem in data center networks. The key idea of TCP-CWR is
to adjust the congestion window size based on the informa-
tion received from the receiver. That is, upon finishing the
transmission of the current data block, the applications run-
ning on the senders send their current congestion window
size to the receiver. When the receiver receives all the data
including the window size, it calculates the average window
size and sends back to each sender. The senders adjust their
congestion window size based on the value received from
the receiver. One of the main advantages of this idea is all
the senders have the same congestion windows when a new
data block starts to end. In addition to TCP-CWR, two Incast
protocols, namely DCTCP and SAB, are also able to solve
the Outcast problem.

3.4 Protocols for solving latency issue

As we mentioned in Sect. 2, the data traffic of data center
networks is a mix of long and short TCP flows. When long
and short flows share the same queue, the short flows suffer
from increased latency due to queue build up by longflows. In
this subsection, we survey the proposed transport protocols
specifically designed for solving the flow completion time
(latency) issue in data center networks.

3.4.1 TCP BOLT

In [40], Brent Stephens et al. proposed a transport protocol
called TCP BOLT, designed to achieve shorter flow comple-
tion time in data centerswhile avoiding head-of-line blocking
and maintaining near TCP fairness. Furthermore, to prevent
deadlock, TCP BOLT presented a novel routing algorithm
that uses edge-disjoint spanning trees. In [40], for reducing
the TCP flow completion times, TCPBOLT utilizes data cen-
ter bridging (DCB) to eliminate TCP slow start, DCTCP to
maintain low queue occupancy and bandwidth-delay product
sized congestion windows. For ensuring the prioritization of
latency-sensitive flows, TCP BOLT used the DCB feature of
Priority Flow Control.

3.4.2 RACS

Munir et al. [43] proposed a Router Assisted Capacity Shar-
ing (RACS) transport protocol for achieving low latency in
data centers. Behind the design ofRACS, there are threemain
goals: (1) minimize flow completion times, while maintain-
ing high network throughput by approximating the shortest
remaining processing time (SRPT) scheduling policy in a dis-
tributed manner, (2) achieve high utilization and (3) achieve

high burst tolerance. RACS achieved these goals by using a
weighted capacity sharingmechanism, explicit rate feedback
and rate-based transfer. With RACS, each flow maintains
a weight, which determines their relative priority in rate
allocation decisions and communicates it to the routers by
rate request packets that are piggybacked onto one of the
data packets every RTT. With SRPT, a flow with shortest
remaining processing time gets the highest priority. Routers
periodically compute the sum of weights of all flows travers-
ing them and assign a rate to each flow that is proportional
to the ratio of flow’s weight to the sum. The minimum rate
along the path of a flow is communicated to the receiver,
which conveys the allocated rate to the senders by copying it
onto their acknowledgment packets or ACKs.

3.4.3 L2DCT

In [25],Munir et al. proposed another low-latency data center
transport protocol called L2DCT, for minimizing flow com-
pletion times in data centers. L2DCT focused on reducing
the completion time for short flows by approximating least
attained service (LAS) scheduling discipline, in a distrib-
uted way. With L2DCT, each flow assigned a weight based
on the amount of data sent to the receiver for estimating
the flow size. Moreover, for getting the congestion status of
the network, the sender used explicit congestion notification
marking scheme. Using this scheme, the sender measures
the extent of network congestion by maintaining a weighted
average of the fraction of marked packets α. Using the esti-
mated flow size as well as the value of alpha, the sender
modulates the size of congestion window. When the sender
updates its congestion window size, short flows are given
higher bandwidth than long flows. This size-aware conges-
tion management scheme of L2DCT can significantly reduce
the flow completion time in data centers.

3.4.4 PFABRIC

Alizadeh et al. [44] observed that rate control is a poor
and ineffective technique for flow scheduling and that the
mechanisms for the two should be decoupled and designed
independently. Based on this observation, the authors pro-
posed a minimalistic data center transport protocol called
PFABRIC, to provide near-optimal flow completion times
even at the 99th percentile for short flows. In PFABRIC,
for each packet, the end hosts attach a single number in the
header that encodes its priority.Whenever the switch receives
a new packet, it decides which packets to accept into the
buffer and which ones to schedule strictly according to the
packet’s priority number. When a new packet arrives and the
buffer is full, then the switch checks whether the priority
of the incoming packet is lower than the packets stored in
the buffer. If yes, then the switch drops that packet. On the
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other hand, if the packet in the buffer has lower priority than
the incoming one, then switch dropped the stored lowest pri-
ority packet and replaced with the incoming packet. When
transmitting, the switch sends the packet with the highest pri-
ority. In this way, the switches can operate independently in a
greedy and local fashion using priority-based scheduling and
dropping mechanism. Furthermore, the rate control design
of PFABRIC used only timeouts mechanism for recovering
the dropped packets. Upon a timeout, the flow enters into
the slow-start algorithm and reduces the value of slow-start
threshold into half of the congestion window size before the
timeout occurred.

3.4.5 PDQ

In Hong et al. [45], proposed a Preemptive Distributed Quick
(PDQ) flow scheduling transport protocol to complete flow
quickly andmeet flow deadlines. As a centralized scheduling
mechanism, PDQ follows the scheduling principles of EDF
tominimizemeanflowcompletion time, and SJF tominimize
the number of deadline-missing flows. In PDQ, whenever the
sender departs a packet, it attaches a scheduling header to
the packet including some state variables about its expected
transmission time, the flow’s deadline, its sending rate and
round trip time. Upon receiving the packets at switches, PDQ
checks the flows having the earliest deadline and its size. If
more than one flows with the earliest deadline, PDQ transmit
the flow with smaller size. On the other hand, if there is only
one flow with the earliest deadline, then PDQ transmits that
flow to the receiver. On the arrival of packets at the receiver
side, the receiver copies the scheduling header from each
packet to its corresponding ACK. Whenever an ACK packet
arrives, the sender updates its flow sending rate based on the
feedback. In this way, PDQ reduces the flow completion time
and improves the missed deadline.

3.4.6 ATCP

Wu et al. [46] observed that the delay-sensitive applications
typically use short flows and often coexist with large flows.
This observation motivates the authors to propose an adap-
tive transmission control protocol (ATCP), to reduce the flow
completion time of short flows. ATCP was designed to steal
bandwidth from large flows over time and reallocate to small
ones, and to compensate large flows bymore transfer time. To
achieve this, ATCP modified the additive increase behavior
of TCP congestion control and perform adaptive weighted
fairness sharing among flows. By setting higher weight to
small flows, ATCP allocates more bandwidth to small flows
than large flows, and thus, ATCP can reduce the completion
time of short flows.

3.4.7 DAQ

Ding et al. [47] proposed a deadline-aware queue transport
protocol to achieve high throughput for long background
flows, while providing high application throughput of short
flows. The objective of DAQ scheduling scheme is to max-
imize the number of flows completing transmission before
their deadlines and to guarantee that long flows receive the
required bandwidth. In [47], it is stated that there are four
main reasons why TCP prolongs the flow completion time:
(1) use of slow-start mechanism, (2) memory monopolizing
by long TCP flows, (3) building up of queue at the switch
and (4) use of timeouts and retransmissions for error control
and congestion avoidance. For addressing the drawbacks of
(2) and (3), DAQ used two different queues at supporting
switches, one per flow type, for avoidingmemorymonopoliz-
ing by long flows and to enable reaching a high transmission
rate. Furthermore, the queue for short flows is divided into
urgent and not-urgent short flows to increase the number of
short flows that finish service within their deadlines while
keeping minimum state information. Urgent flows are served
with higher priority than not-urgent flows. Weighted round-
robin scheduling is used for determination of service to the
different flows. By using a deadline threshold, DAQ deter-
mined the urgency of a flow. In addition, DAQ used a simple
but effective link-by-link credit-based flow control for avoid-
ing packet loses and retransmissions and to overcome the
drawbacks of (1) and (4).

3.4.8 MCP

Chen et al. [49] proposed a novel distributed and reactive
transport protocol called MCP, for reducing the per-packet
delay while providing right transmission rates to meet dead-
lines by fully utilizing the ECN feedback mechanism. To
minimize the overall per-packet delay,MCPaims to devise an
optimal source rate controlmechanism in data center network
with throughput guarantee. At first, the authors formulate
a stochastic packet delay minimization problem with con-
straints on deadline completion and network stability and
then derive an optimal congestion window update function
to determine the right transmission rate for every flow.

3.5 Comparison of transport protocols proposed for
reducing TCP flow completion time

We presented ten transport protocols including DCTCP
and SAB proposed recently for mitigating the TCP flow
completion time issue in data center networks. Table 2
summarizes the comparative study of each protocol. Apart
from the novelty of the proposed TCP variants, we eval-
uate each solution using the following four main criteria:
modifications to the TCP stack, modification to the switch
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Table 2 Comparison of transport protocols which is able to reduce the TCP flow completion time

Protocol Deadline aware Modification in
switch hardware

ECN feedback Require flow size
information

TCP modifications

DAQ Yes Yes No No Sender and receiver

MCP Yes No Yes Yes Sender and receiver

TCP BOLT No No Yes No Sender

PDQ Yes Yes No Yes Sender and receiver

PFABRIC Yes No No Yes Sender and receiver

RACS No No No No Sender and receiver

L2DCT No No Yes No Sender

ATCP Yes No No Yes Sender and receiver

DCTCP No No Yes No Sender and receiver

SAB No No No Yes Sender and receiver

hardware, ECN feedback, require flow size information,
and to check whether the proposed protocols is deadline
aware or not for improving the performance in data cen-
ter networks. Among this transport protocols, DAQ, MCP,
PDQ, PFABRIC and ATCP are deadline-aware protocols
proposed for solving the flow completion time. The main
objective of these protocols is to assign deadlines to flows
and try to meet those deadlines. Compared with deadline-
unaware protocols such as TCP BOLT, RACS, L2DCT,
DCTCP and SAB, reducing the flow completion time while
determining deadlines for providing guaranteed transmis-
sion rate is a challenging tasks as it varies with load,
network congestion, etc. However, in data center networks,
the data traffic is a mix of long and short flows [48,50,51].
Short deadlines can be associated with long flows. As a
result, deadline-aware protocols do not necessarily mini-
mize the flow completion time. Currently, the deadlines
are set based on the user experience surveys, since there
is no established basis for accurately setting the dead-
lines.

In addition, the deadline-aware protocols such as ADQ
and PDQ require nontrivial switch hardware modification
and are quite challenging in the practical difficulties for
implementing these protocols, not only that the deadline-
aware protocols except DAQ required flow size information
for prioritizing the short and long flows. Passing this infor-
mation to the centralized schedulers causes overhead in the
network, which may degrade the performance. Other proto-
col assigns weights to flows instead of getting the flow size
information. Furthermore, the protocols MCP, TCP BOLT,
L2DCT and DCTCP require ECN mechanism for sending
congestion information to the senders. As a result, in addi-
tion to the modifications of TCP stack, these protocols need
switch support for reducing the flow completion time. By
considering the limitations of these protocols, it is neces-

sary to propose a protocol for reducing the flow completion
time.

4 Conclusion

Data centers have become a cost-effective infrastructure for
hosting a diverse range of cloud applications and for stor-
ing large volumes of data. The network applications of the
data center networks are diverse in nature and have vari-
ous performance requirements. Data center flows typically
operate using the TCP as it is a mature technology that pro-
vides reliable and ordered bidirectional delivery of stream of
bytes from one application to the other application residing
on the same or two different machines. However, when TCP
is deployed in data center networks, it is unable to provide
high throughput and fairness mainly due to the problem of
TCP Incast, Outcast and latency. Hence, there is a need to
redesign TCP specifically to handle the traffic in data center
networks. In this paper, we presented an in-depth survey of
recently proposed transport protocols specifically to mitigate
the TCP issues in data center networks by highlighting the
advantages and limitations of the prominent transport pro-
tocols. In addition, we have provided a comparative study
of the currently existing transport protocols in detail to fur-
ther assist readers to understand the specific modifications
required for the implementation of each protocols.
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