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Abstract The problem of TCP incast in data centers
attracts a lot of attention in our research community. TCP
incast is a catastrophic throughput collapse that occurs when
multiple senders transmitting TCP data simultaneously to a
single aggregator. Based on several experiments, researchers
found that TCP timeouts are the primary cause of incast
problem. Particularly, timeouts due to insufficient duplicate
acknowledgments is unavoidable when at least one of the
last three segments is lost from the tail of a window. As a
result, this type of timeouts should be avoided to improve
the goodput of TCP in data center networks. A few attempts
have been made to reduce timeouts, but still the problem
is not completely solved especially in the case of timeouts
due to insufficient duplicate acknowledgments. In this paper,
we present an efficient TCP fast retransmission approach,
called TCP-EFR, which is capable to reduce TCP timeouts
due to lack of duplicate acknowledgments which is caused
by the loss of packets from the tail of a window in data center
networks. TCP-EFR makes changes in the fast retransmis-
sion and recovery algorithm of TCP by using the congestion
signal mechanism of DCTCP based on instantaneous queue
length. In addition, TCP-EFR controls the sending rate for
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avoiding the overflow of switch buffer in order to reduce the
loss of packets. The results of a series of simulations in sin-
gle as well as multiple bottleneck topologies using qualnet
4.5 demonstrates that TCP-EFR can significantly reduce the
timeouts due to inadequate duplicate acknowledgments and
noticeably improves the performance compared to DCTCP,
ICTCP and TCP in terms of goodput, accuracy and stability
under various network conditions.
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1 Introduction

A data center network is the communication infrastructure
used in a data center [1,2]. Recently, data centers are emerg-
ing as critical computing platforms for online services such
as Web search, Webmail and advertisement [3,4]. The key
goal of data center network is to provide efficient and fault-
tolerant routing services to the applications of upper layer and
to interconnect the massive number of data center servers
[5]. The main features of a data center network are high
bandwidth, low propagation delays, and small switch buffers
[2]. Data centers form the backbone of the Internet and pro-
vide the platform for the deployment of diverse applications
such as cloud computing, video streaming etc. Global tech
companies like Google, Facebook, Amazon, Microsoft and
IBM use data centers for large-scale general computations, e-
commerce, Web search and storage and required to provide
efficient, scalable and reliable data access and processing
[4,6]. With the rise of cloud computing, data center host-
ing services are in high demand and have become a huge
business that plays an important role in the future growth of
Information and Communication Technology (ICT) industry
[2,3,7].
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The data centers are typically organized with many servers
for managing the stored data and Ethernet switches for
interconnecting these servers to the clients during the data
transmissions period [8,9]. The small buffer size of Eth-
ernet switches can easily overflow the buffer resulting in
losses due to the simultaneous transmissions of packets from
servers. This leads to the poor performance of traditional
TCP [10,11]. As a result, the implementation of TCP in data
center networks has to face three main challenges such as
high latency for short flows [12], TCP Incast [9,10] and TCP
Outcast [13]. Among them, a recently found problem TCP
incast attracts a lot of attention in our research community
[2,9,10,12,14–16] due to the catastrophic goodput degrada-
tion by transmitting TCP data simultaneously from multiple
servers to a single client. In this type of communication pat-
tern, the client will not send the next data request until all the
requested data blocks have been received [11].

Based on several experiments, researchers found that
TCP timeouts [14,16,17] are the primary cause of incast
problem in data center networks. Specifically, timeouts due
to insufficient duplicate acknowledgments (DUPACKs) are
unavoidable when at least one of the last three segments is lost
[18–21]. This type of frequent timeouts should be avoided
to improve the goodput of TCP in data center networks. The
reason is, after the timeouts, the servers will again send the
requested data simultaneously, which results in the overflow
of switch buffer and retransmission for a new round. As a
result, it is an important issue of TCP performance in data
center networks. A few attempts [19,22–26] has been made to
avoid timeouts in data center networks, but still the problem
is not completely solved especially in the case of timeouts
due to insufficient DUPACKs. In this paper, we present an
efficient TCP fast retransmission approach, called TCP-EFR,
which is capable to reduce retransmission timeouts due to the
lack of DUPACKs which is caused by the loss of packets from
the tail of a window in data center networks.

TCP-EFR provides the following contributions for reduc-
ing the timeouts due to lack of DUPACKs.

• TCP-EFR introduces two schemes: DUPACK_
REACTION and PKT_CONTROL.

– DUPACK_REACTION It helps the sender for tak-
ing a decision whether to retransmit the lost packet
immediately or not.

– PKT_CONTROL It helps the sender to adjust the
sending rate for avoiding the packet losses due to
heavy congestion in the network.

• TCP-EFR makes a change in the fast retransmission and
recovery algorithm of traditional TCP according to the
two different schemes for retransmission and packet con-
trolling.

• TCP-EFR compared its performance improvement with
DCTCP, ICTCP and TCP NewReno in terms of goodput,
accuracy and stability by a series of simulations in differ-
ent topologies using qualnet 4.5 network simulator. The
results demonstrate that TCP-EFR can reduce the time-
outs due to lack of DUPACKs and achieves significant
performance improvement than other TCP variants under
various conditions of the network.

The remainder of the paper is organized as follows. In
Sect. 2, we discuss the problem of timeouts due to insufficient
DUPACKs. We present the related work in Sect. 3. Section 4
describes the details of TCP-EFR. In Sect. 5, we describe our
experimental methodology and present our results. Finally,
Sect. 6 concludes our work.

2 Timeouts due to insufficient DUPACKs

As shown in Fig. 1a in data center networks, multiple servers
(S1 to Sn) send the requested data simultaneously to a single
receiver (R). The simultaneous transmissions from thousands
of servers overload the buffer resulting in packet losses due
to the limited buffer space associated with the output port of
the switches (S) [11]. As we know that, TCP detects packet
losses either by receiving three DUPACKs or the expiration
of timeouts [27,28]. In the case of TCP timeouts, the sender
retransmits the unacknowledged packet and triggers the slow
start algorithm by reducing the size of congestion window
to one segment. If the network congestion is too heavy, the
frequent timeouts degrades the performance of TCP [29].
For avoiding this situation, fast retransmission algorithm is
implemented in order to recover the lost packets. When the
sender receives three DUPACKs, it triggers fast retransmis-
sion algorithm and retransmit the lost packet by reducing
the size of congestion window into half of the current value
[30,31]. After retransmitting the lost packet the sender enters
into fast recovery algorithm. This data-driven loss detection
algorithm helps the TCP to improve the throughput [21].

Unfortunately, in data center networks the data-driven loss
detection does not work well if some packets are loss from the
tail of a window [17,22]. For example, consider the sender
sends 4 packets in a window as shown in Fig. 1b. Among that
the segment 2 was lost. Upon receiving the segments 3 and
4, the receiver sends two DUPACKs to the sender.

Without receiving three DUPACKs the sender cannot trig-
ger fast retransmission algorithm. As a result, the sender
needs to wait for the expiration of timeouts for retransmitting
the lost packet 2. These types of losses are not rare in data
center networks due to the simultaneous transmission of data
to the clients from large number of servers [12,13]. We con-
ducted an experiment for checking the timeouts due to lack
of DUPACKs by packet losses from the tail of a window in
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Fig. 2 Number of timeouts due to lack of DUPACKs

a single bottleneck topology as shown in Fig. 1a. The link
capacity is set to 1 Gbps and the size of the bottleneck buffer
is set to 100 KB. We set the packet size to 1 KB and block size
256 KB. The RTOmin is set to 10 ms. We present the result in
Fig. 2. From the experimental result, we observed that when
the number of senders increases, TCP timeouts (TO_LDAs)
also increases due to insufficient DUPACKs. Hence, it is an
important issue for reducing the timeouts due to insufficient
DUPACKs as it is one of the primary causes of TCP incast
problem in data center networks.

3 Related work

As we mentioned in Sect. 2, the performance degradation of
TCP in data center networks are mainly due to TCP incast

throughput collapse. This issue has already attracted the
attention of many researchers in our research community.
In this section, we present the solutions proposed recently
for solving the TCP incast problem caused by the frequent
timeouts due to many-to-one communication pattern in data
center networks.

FGRTO In [32], the authors proposed a practical, effec-
tive and safe solution for eliminating TCP incast collapse in
data center environments. The authors found that enabling
microsecond-granularity retransmission timeouts by elimi-
nating minimum retransmission timeouts can successfully
avoid TCP incast collapse in data center applications. This
approach can be easily deployed, since it requires only three
changes to Linux TCP source code. In addition, based on
the experimental results the authors recommended that for
achieving full performance delayed acknowledgment (ACK)
should be disabled.

DCTCPData Center TCP (DCTCP) [25], a TCP-like pro-
tocol designed to operate with very low buffer occupancies,
without the loss of throughput for data center networks [10].
The goal of DCTCP is to achieve high burst tolerance, low
latency, and high throughput, primarily by reacting to con-
gestion in proportion to the extent of congestion. DCTCP
used Explicit Congestion Notification (ECN) in the network
to provide multi-bit feedback from the information present
in the single-bit sequence of marks to the end hosts. The sim-
ple marking scheme of DCTCP at switches helps the sources
react to congestion by reducing the window by a factor that
depends on the fraction of marked packets.

ICTCP Incast Congestion Control for TCP (ICTCP) [22]
a systematically designed protocol to perform congestion
control at the receiver side by adjusting the receiver win-
dow. The key idea of ICTCP receive window adjustment is
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Table 1 Comparison of
recently proposed solutions

Recent solutions TCP stack modifications M-PL M-RPL M-TPL

FGRTO Sender and Receiver No Yes No

DCTCP Sender and Receiver Yes Yes No

ICTCP Receiver Yes Yes No

IA-TCP Receiver Yes Yes No

TCP-FITDC Sender and Receiver Yes Yes No

TDCTCP Sender and Receiver Yes Yes No

ICaT Sender and Receiver No Yes Yes

to increase window when the difference ratio of measured
and expected throughput is small, while decrease window
when the difference ratio is large. To perform congestion
control at receiver side, ICTCP uses the available bandwidth
on the network interface as a quota to co-ordinate the receive
window increase of all incoming connections.

IA-TCP The Incast Avoidance TCP (IA-TCP) is a rate-
based congestion control algorithm that controls the total
number of packets injected into the network pipe to meet
the bandwidth-delay product [26]. IA-TCP was designed to
operate at the receiver side like ICTCP, which controls both
the window size of workers and the delay of ACKs. To control
the sending rate of packets, IA-TCP used the measurement
of link capacity i.e., the link rate of the interface connected to
the top of the rack switch, and it is obtained from the transport
layer. In addition, to control the window size of each worker
that employs the standard TCP, the aggregator exploits the
advertisement field in the ACK header.

TCP-FITDCTCP-FITDC [19] is a delay-based TCP con-
gestion control algorithm proposed for reacting to congestion
states of conventional TCP more accurately and thereby
improving the performance of TCP in data center networks.
The main goal of TCP-FITDC is to achieve low latency, high
throughput and fast adjustment for TCP when applied to data
center networks. For achieving the goal, TCP-FITDC utilized
the ECN marking scheme, defined in [25], as an indicator of
network buffer occupancy and buffer overflow, as well as the
queueing delay changes for an estimate of the variations in
the available bandwidth.

TDCTCP An improved version of DCTCP algorithm
called TDCTCP [33], specifically designed to provide high
throughput without significantly increasing the end-to-end
delay. TDCTCP changes were introduced in the DCTCP’s
congestion control algorithm and in dynamic delayed ACK
calculation of timeout. Compared to DCTCP, the modified
TDCTCP is able to handle the TCP Incast problem very effi-
ciently. The modification of congestion avoidance algorithm
helps the sender to adjust its sending rate and can avoid the
buffer overflow. The simulation based experimental results
shows that TDCTCP achieves 15 % higher throughput and
improved fairness when compared to DCTCP. Using the cal-

culation of dynamic delayed ACK timeout, TDCTCP can
achieve stable throughput.

ICaT Recently, ICaT [34], presented three solutions for
preventing TCP Incast throughput collapse at the beginning,
continuation and the termination of a TCP connection. The
three solutions are (1) admission control of TCP connections,
(2) timestamp-assisted retransmission and (3) reiterated FIN
packets. Among the three solutions, the authors reiterated
FIN packets as a solution to tail loss. As a result, the
sender can retransmit the lost packets by triggering enough
DUPACKs.

Table 1 summarizes the comparative study of each solu-
tion. We compare each solution using the following four
main criteria: modifications to the TCP stack, mechanism
for preventing packet losses (M-PL), mechanism for recov-
ering packet losses (M-RPL) and mechanism for avoiding
frequent retransmission timeouts due to packet losses from
the tail of the window (M-TPL). Although these algorithms
can mitigate the problem of TCP incast issue, except ICaT,
all other algorithms have no mechanism to reduce frequent
retransmission timeouts due to the lack of DUPACKs. As it
is not rare in data center networks, the performance of these
algorithms degrades due to continuous invoking of slow start
algorithms by timeouts. Eventhough ICaT has mechanism
for recovering the packets from tail loss without the expira-
tion of timeouts, ICaT does not have mechansim to prevent
packet loss from retransmissions and frequent timeouts due to
highly bursty traffic of multiple TCP connections in data cen-
ter networks. Instead, ICaT helps the TCP sender to recover
the packets after loss. In our work, we not only propose a
solution to recover the lost packets due to tail loss but also
provide a mechanism for avoiding the packet losses before
the overflow of Ethernet switch buffer.

4 TCP-EFR

The primary objective of TCP-EFR is to increase the per-
formance of TCP by reducing the frequent retransmission
timeouts due to insufficient DUPACKs. One of the main rea-
sons for the lack of DUPACKs is the loss of packets from
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the tail of a window. To achieve our goal, we propose two
schemes in TCP-EFR, namely, DUPACK_REACTION and
PKT_CONTROL.

• DUPACK_REACTION In this scheme, the sender is
capable to retransmit the lost packets even if the sender
does not receive enough DUPACKs.

• PKT_CONTROL This scheme helps the senders to
control the packet sending rate by reducing the size of
congestion window.

In addition, we make changes to the fast retransmission
and recovery algorithms of TCP NewReno as it is the most
deployed protocol in data center networks. We explain the
two schemes in below subsections.

4.1 DUPACK_REACTION

In TCP, the sender uses the packet loss signal for determin-
ing the congestion of the network. As we mentioned in Sect.
2, TCP uses two methods to convey packet loss due to con-
gestion in the network. One is retransmission timeout and
the other is fast retransmission by three DUPACKs. Com-
pare to former method, the indication of packet losses due
to network congestion via DUPACKs is faster for recovering
the lost packets without degrading the performance. How-
ever, if the sender does not receive the packet loss signal by
three DUPACKs, it waits for a longer period of time for the
expiration of retransmission timer and degrades the perfor-
mance of TCP. In data center networks, this type of timeouts
is unavoidable due to the drop of packets from the tail of a
window [18–21].

For reducing such type of timeouts, we propose a
DUPACK_REACTION scheme in TCP-EFR for reacting to
the packet loss via DUPACKs in the network.

In TCP-EFR, whenever the sender receives a DUPACK,
it calculates the outstanding packets by using the equation in
[35]. If the number of outstanding packets is less than or equal
to 3, then we retransmit the lost packet immediately without
waiting for two more DUPACKs. However, retransmitting
the packets before receiving three DUPACKs causes false
retransmissions due to network failure or packet reordering
as it is not rare in data center networks [36–38]. For avoid-
ing such situations, we use the congestion signal (CS) for
determining whether the DUPACK is due to congestion in
the network or not.

Many authors have pointed out that the CS through packet
marking mechanism provides sufficient information about
the congestion in the network [19,25,33,39]. As a result,
for avoiding false retransmissions by reducing the DUPACK
threshold from three to one based on the outstanding pack-
ets, we utilize the DCTCP congestion notification packet

ACKs 

Marking packets based on Instantaneous 
queue length‘Q’ 

CE=1 

Q>K 

Sender Receiver 

Switch buffer 

Switch 

Fig. 3 TCP-EFR congestion signal mechanism

marking mechanism. DCTCP, a noted solution proposed
for mitigating the TCP incast problem in data center net-
works, modified the packet marking mechanism of ECN and
employs a very simple active queue management scheme
for informing the sender about the congestion in the net-
work. As shown in Fig. 3, if the queue occupancy is greater
than a threshold value (K), TCP-EFR marks all the arriving
packets based on the instantaneous queue length (Q) with
the congestion experienced (CE) code point. For sending
the timely congestion notification to the sender, TCP-EFR
sends ACK for every packet like DCTCP, setting the ECN-
Echo flag if and only if the packet has a marked CE code
point. By using the packet marking mechanism of DCTCP,
the DUPACK_REACTION scheme of TCP-EFR modifies
the fast retransmission algorithm for reducing the timeouts
due to insufficient DUPACKs.

The DUPACK_REACTION of TCP-EFR is as follows:
We classify the DUPACKs into two types: DUPACK with
CS and DUPACK without CS.

• DUPACK with congestion signal Whenever the sender
receives a DUPACK with CS, it indicates that the packet
loss happens due to heavy network congestion. However,
the sender does not know whether the packet loss happens
from the tail of a window or not. If it is from the tail of a
window, the sender does not receive three DUPACKs and
waits for the retransmission timeouts. For avoiding the
retransmission timeouts, the sender checks the outstand-
ing packets and if the outstanding packets is less than or
equal to three the sender immediately retransmit the lost
packet without waiting for two more DUPACKs. Other-
wise the sender waits for three DUPACKs for recovering
the lost packets like TCP NewReno. In this way, TCP-
EFR avoids retransmission timeouts due to the lack of
DUPACKs in heavy network congestion.

• DUPACK without congestion signal When the sender
receives a DUPACK without CS, the sender need not
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retransmit the packet immediately. Instead, it sends a
new packet [35]. We assume that the newly sent packet
may not lose in the network. When the sender receives a
second DUPACK, again the sender sends another new
packet. Upon the arrival of newly sent packets, the
receiver can send third DUPACK if the packet is really
lost in the network. Upon receiving the third DUPACK,
the sender retransmits the lost packet. A simple exam-
ple of DUPACK_REACTION is shown in Fig. 4a and
b. Consider the sender sends 3 packets. Among that, the
packet 2 was lost. As a result, the sender gets a DUPACK
of the lost packet. As shown in Fig. 4a assume that the
sender received the first DUPACK with CS. As a result
the sender immediately retransmits the lost packet 2 since
the outstanding packet is less than 3. On the other hand,
if the sender receives a DUPACK without CS as shown in
Fig. 4b, then the sender transmits a new packet 4 instead
of retransmission.

Upon receiving the new packet 4, the receiver again sends
a DUPACK of the lost packet 2. The sender sends the next
packet 5. When the sender receives a third DUPACK of
the lost packet 2, it retransmits the packet 2 immediately
and follows the fast recovery procedure. With the help of
DUPACK_REACTION scheme the sender can reduce the
timeouts due to insufficient DUPACKS and also the sender
can reduce the false retransmissions.

4.2 PKT_CONTROL

Here we explain about the PKT_CONTROL scheme of TCP-
EFR. Controlling the packet sending rate is important for
maintaining the queue length of the buffer. In data center
networks, the queue length will increase rapidly in a short
time due to the concurrent arrival of burst of flows from mul-
tiple senders to a single receiver [11]. As a result, switch

marks lot of packets and the senders reduce their conges-
tion window size frequently and this will leads to degrade
the performance. For avoiding the rapid increase of queue
length, whenever the sender received a CS via ACKs or
DUPACKs, it reduces the congestion window based on four
cases:

• When the first DUPACK is received with CS and
the sender is not already in the fast recovery proce-
dure, we set the size of congestion window like TCP
NewReno.

• When the first DUPACK is received without CS and the
sender is not already in the fast recovery procedure, we
use the current value of the congestion window.

• When the sender receives a normal ACK with CS, the
size of congestion window (CWND) reduces based on
the fraction of marked packets like DCTCP. In DCTCP,
whenever the sender receives an ACK with ECE is set to
1, the sender reduces the congestion window using the
Eq. 1,

CWND ← CWND × (1 − α/2) (1)

where α is calculated from the fraction of marked packets
(F) and weight factor (g) according to the Eq. 2

α = (1 − g) α + g × F (2)

If the value of α is near zero, it indicates that the network
is congested lightly. On the other hand, if the value of α

is equal to one, it indicates that the network is highly con-
gested. In the former case, DCTCP congestion window
reduces slightly according to the Eq. 2.

• Whenever the sender experiences a timeout, the CWND
reduction is same as TCP NewReno.

5 Performance evaluation

We evaluate the performance of TCP-EFR in terms of good-
put, accuracy and stability through Qualnet simulations [40]
using single as well as multiple bottleneck links. We compare
the performance of TCP-EFR with DCTCP, ICTCP and TCP
(NewReno) with and without background traffic. Among the
different TCP variants proposed for data center networks,
DCTCP and ICTCP are the noted solutions designed for
improving the performance of TCP [2,6,8,9,13]. In addition,
we used TCP NewReno as it is the most widely deployed
transport protocol in data center networks. More in detail, in
Sect. 5.1, we explain about the performance metrics used for
our simulations, while in Sect. 5.2 we describe about the sin-
gle bottleneck topology, the parameters and results obtained
from our evaluation. Further the evaluation set up and the
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Fig. 6 Comparison of goodput in a and comparison of fast retransmissions in b

results using multiple bottlenecks topology is presented in
Sect. 5.3.

5.1 Performance metrics

To evaluate the ability of TCP-EFR for improving the per-
formance of TCP in data center networks by reducing the
frequent retransmission timeouts from lack of DUPACKs,
we use the following main performance metrics:

5.1.1 Goodput

It is calculated as the ratio of the total data transferred by all
the servers to the client and the time required to complete the
transmission of data [24].

5.1.2 Accuracy

Accuracy is one of the most important metric for improving
the goodput performance. If accuracy increases, goodput also
increases. For evaluating the performance of TCP TCP-EFR,
we check the accuracy of detecting timeouts (AT O_LDA)

which happened due to the lack of DUPACKs as shown
below.

ATO_LDA = (NPR_TO/TotalTO_LDA)∗100 (3)

Where NPR_T O is the number of packets recovered from
timeouts and Total T O_LDA is the total number of timeouts
due to insufficient DUPACKs occurred in our simulation.
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5.1.3 Stability

We use the standard deviation of the accuracy of packet loss
recovery using multiple bottleneck topology. To calculate the
stability, we use the equation used in [41].

S = √
1/n

n∑

i=1

(Ai − A)2 (4)

where Ai is the accuracy measured in a simulation scenario i,
A is the average of accuracies measured in a set of simulation
scenarios and n is the number of simulation scenarios.

5.2 Single bottleneck topology

We first evaluate the performance of TCP-EFR with TCP,
DCTCP and ICTCP in a single bottleneck topology. In this
section, we explain the topology and evaluation set up used
for our simulations. Figure 5 shows our single bottleneck
topology which consists of 60 senders, one switch and one
receiver. Among that, 50 senders use TCP flows and 10
senders use UDP flows. The link capacity is set to 1 Gbps, the
switch buffer size is set to 100 KB per port and the sender SRU
size is set to 64 KB. Otherwise we specified. The RTOmin
is set 10 ms, link delay is set to 25 µs making the base RTT
100 µs and the size of the UDP background flow is set to
10 Mbps. For the key parameters of DCTCP and TCP-EFR,
we set the weighted averaging factor to 0.0625 and the value
of packet marking threshold ‘K’ to 20 packets [42]. In our
simulations, the application sends the data as fast as possible
to the transport layer and the transmission is completed when
the receiver receives the requested data successfully. In Sects.
5.2.1 and 5.2.2, we present the results obtained from our sim-
ulations using our performance metrics without background
traffic and in the presence of background traffic.

5.2.1 Performance without background traffic

First, we present the performance of TCP-EFR in the absence
of background traffic. For this experiment, we use 50 TCP
senders for sending data to the receiver. We compared the
goodput of ICTCP, DCTCP, TCP and TCP-EFR as shown
in Fig. 6a. From the results, we can see that the goodput of
TCP-EFR greatly improves compared to other TCP variants
especially when the number of sender increases. For instance,
when there are 32 senders, the goodput of TCP and ICTCP
variants are less than 100 Mbps while that of DCTCP is 123
Mbps.

However, the performance of TCP-EFR reaches to 945
Mbps. The reason for this achievement is the loss recov-
ery mechanism of TCP-EFR compared to TCP, ICTCP and
DCTCP. In addition, we observed that as the network conges-
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tion becomes heavier the performance of TCP-EFR reduces
to less than 250 Mbps after 40 servers due to more time-
outs. But, it still achieves better performance compared to
ICTCP, DCTCP and TCP. Figure 6b presents the performance
of TCP-EFR in terms of fast retransmissions. Compared to
other variants, TCP-EFR has the best performance since it
has an efficient mechanism to recover the lost packets by fast
retransmissions and thereby reduce the frequent retransmis-
sion timeouts. When the number of senders increases to 40,
TCP-EFR has more than 20 fast retransmissions compared to
other variants. Next, we evaluate the query completion time
using the same parameters. In Fig. 7, we observe that the
query completion time of TCP and other variants increases
with increase in the number of senders. When the number of
sender increases, the many-to-one traffic pattern of data cen-
ter networks often causes heavy network congestion which
results in high packet loss ratio. In this figure, we find that
TCP-EFR takes only less time compared to DCTCP, ICTCP
and TCP. This is because TCP-EFR is able to maintain the
queue length by using the PKT_CONTROL scheme and thus
reduce the number of packet losses. In the case of 50 senders,
the query completion time of TCP-EFR is less than 40 ms
while that of ICTCP and TCP are above 50 ms.

5.2.2 Performance with background traffic

We conduct simulations to evaluate the performance of
TCP-EFR in the presence of background traffic. For this eval-
uation, we use 50 TCP senders and 10 UDP senders in our
single bottleneck topology. Rest of the parameters is same as
we used in the above subsection. Figure 8 shows the num-
ber of timeouts due to the lack of DUPACKs in the presence
of background traffic. We observe that the timeouts of TCP-
EFR is much less than that of DCTCP, ICTCP and TCP. Upto
20 senders TCP-EFR has almost zero timeouts due to its effi-
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cient retransmission mechanism. However, DCTCP, ICTCP
and TCP have no mechanism to recover the lost packet with-
out timeouts if the losses happen from tail of a window and
they suffer from frequent timeouts. Although TCP-EFR can
recover the packets from new retransmission mechanism,
TCP-EFR also suffers some timeouts when the number of
senders increases. However, compared to other TCP variants
TCP-EFR has less number of timeouts.

Figure 9a shows the performance of TCP-EFR in terms of
accuracy with varying number of senders with background
traffic (WBT) and without background traffic (WoBT). We
should note that, upto 20 senders TCP-EFR has 100 % of
accuracy for recovering the packet losses from tail of a win-
dow. However, the accuracy is decreasing when the number
of sender increases. The main reason is the loss of multiple
packets from a window. When the sender reaches 40, the
accuracy is close to 80 % in terms of without background
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Fig. 10 Multiple bottleneck topology

traffic and less than 45 % in terms of the presence of back-
ground traffic. On the other hand, more than 40 % accuracy
achieved in the absence of background traffic at 50 senders
while less than 30 % accuracy achieved in the presence of
background traffic at the same number of senders.

In Fig. 9b, we present the accuracy of TCP-EFR with
background traffic in terms of number of different flows
which varies from 20 to 100. When the number of flows
increases the accuracy is decreasing. However, TCP-EFR
achieves more than 40 % of accuracy even when the num-
ber of flows reaches 100. In the next section, we present the
performance of TCP-EFR and all other TCP variants using
multiple bottleneck topology.

5.3 Multiple bottleneck topology

Our previous simulation results are based on single bottle-
neck topology in which all the senders and the receiver are
communicated by a single switch. In this section, we compare
the performance of TCP-EFR in multiple bottleneck topol-
ogy which consists of three switches, seven senders and four
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Fig. 12 Comparison of goodput in a and b shows the stability of TCP-EFR

receivers as shown in Fig. 10. Among that, switch 1 consists
of four senders (a, b, c and d), switch 2 consists of 3 senders
(e, f and g) and switch 3 consists of 4 receivers (h, i, j and k).
We compare the results into two sets: set 1 consists of flows
from the senders a→k, b→j, c→i and d→h whereas set 2
consists of flows from the senders e→k, f→i, and g→h.

The capacity of each link is 1 Gbps, link delay we set to
25 µs, and the size of switch buffers are 128 KB. The packet
size we set to 1 KB. The senders of set 1 communicate with
the receivers through the switches 1, 2 and 3 whereas the
senders from set 2 communicate with the receivers through
the switches 2 and 3. Using multiple bottleneck topology,
we compared the performance of TCP-EFR with DCTCP
and TCP.

Figure 11a presents the comparison of goodput measured
from sets 1 and 2. Compared to set 1, the senders in the set
2 achieve better goodput. The main reason is differences in
the number of hops between the senders and the receivers.

If hops increase, RTT also increases. However, TCP-EFR
outperforms DCTCP and TCP in both sets. In set 1, TCP-
EFR achieves more than 600 Mbps while the goodput of
DCTCP and TCP are less than 450 Mbps.

On the other hand, in set 2 TCP-EFR maintains the good-
put of 635 Mbps while that of DCTCP and TCP have 586
Mbps, 378 Mbps, respectively. Figure 11b shows the num-
ber of timeouts happens in sets 1 and 2. We can clearly see
that the timeouts of TCP-EFR is less than 150 compared to
other variants in both sets. It means that TCP-EFR can con-
tinuously send more packets without suffering the frequent
invoke of slow start algorithm due to timeouts. This reflects in
the goodput of TCP-EFR. In the case of other variants, they
suffer more than 200 timeouts in set 1 and more than 100
timeouts in set 2 which results in the degradation of good-
put. Figure 12a shows the comparison of goodput in terms of
different number of flows from the senders in set 2. From the
results, we can see that after 80 flows the goodput of all vari-
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ants except TCP-EFR falls below 400 Mbps while TCP-EFR
outperforms with goodput more than 600 Mbps.

Figure 12b presents the stability of TCP-EFR in sets 1 and
2 of the multiple bottleneck topology. From the results, we
observed that set 2 is more stable than set 1. This is because;
in set 1 TCP-EFR suffers more packet losses. As a result, the
stability of accuracy fluctuates in this network condition and
drops the stability.

We conducted more simulations for evaluating the time-
outs and the completion times of query and short messages
by generating practical traffic similar to the traffic charac-
teristics described in [25]. For this experiment, we used a
network topology that consists of one aggregation switch
and 10 top-of-rack switches, each rack has 10 servers. We
set the link rate of each rack switches to 1 and 10 Gbps
for the aggregation switch. The delay of the links was set
to 25 µs and we deployed a large buffer for the aggrega-
tion switch by assuming that the rack switches are shallow
buffered commodity switches. The threshold value ‘K’ we
set for TCP-EFR and DCTCP are 20 for 1 Gbps and 65

for 10 Gbps and the RTOmin was set to 10 ms. Figure 13
shows the comparison of average completion times of query
and short messages. Compared to TCP, DCTCP and TCP-
EFR achieves good performance. However, the completion
times of TCP-EFR shows very low than the completion times
of DCTCP due to its ability for avoiding the timeouts due
to tail packet losses and the mechanism for controlling the
sending packets. Figure 14 presents the average number of
total timeouts occurred due to tail packet losses during sim-
ulations. When the number of senders increases, TCP-EFR
shows timeouts. However, the number of timeouts is lesser
compared to DCTCP and TCP.

6 Conclusion

TCP timeouts are the root cause of incast problem in data
center networks. In data center networks more than 30 %
of packet losses are caused from the tail of a window. This
results in lack of DUPACKs for triggering fast retransmis-
sions and cause frequent timeouts. For reducing such types
of timeouts, in this paper, we presented a simple and efficient
solution called TCP-EFR which consists of two schemes for
reducing the timeouts due to lack of DUPACKs and control-
ling the sending rate for maintaining the queue length of the
buffer in order to avoid more timeouts. The extensive simu-
lation using Qualnet 4.5 show that TCP-EFR can effectively
improve the goodput by reducing the timeouts compared to
the existing solutions, namely, DCTCP, ICTCP and TCP. In
addition, the accuracy of TCP-EFR is better for recovering
the lost packet via DUPACKs rather than waiting for time-
outs. Furthermore, the performance of TCP-EFR in terms of
stability also shows satisfactorily improvement in multiple
bottleneck topology.
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