
Techniques for Secure Data Transfer
Jeffery Gardner Jr.

Department of Computer Science, Grambling State University, USA

Abstract — The Advanced Encryption Standard better

known as the AES algorithm is a symmetric (uses the

same key to encrypt and decrypt) cryptographic

technique used in most of today’s classified and

unclassified data transfers. The AES algorithm provides

data transfers with layers of security through its

mathematical complexity. Alongside this technique of

encryption, the act of concealing data within different

objects is now becoming an essential component in the

art of secure data transfer. This method of hiding secret

messages within a file type is known as Steganography.

Even though these two elements of secure data transfer

differ, they both share the same objective namely to

protect the integrity of the data. This paper provides an

explanation of Steganography and AES algorithm and

how they can be used together to enhance the security of

data. The experiments that this paper demonstrates used

the AES-256 algorithm.

KEYWORDS

Advanced Encryption Standard, steganography,

algorithm, S-Box, cryptography.

1. INTRODUCTION

The Advance Encryption Standard algorithm (AES)

is the standard encryption technique for today’s classified

and unclassified data transfers. The AES algorithm

utilizes the Rijndael algorithm [1] that is a symmetric

block cipher that operates on blocks of 128 bits giving by

the required standard. As a standard, three different key

lengths supports AES. They are AES-128, AES-192, and

AES-256. The security of the AES algorithm heavily

relies on the mathematical complexity of the five

different layers of the giving components. The layers of

the AES algorithm include the Key Expansion,

Substitution Bytes, Shift Rows, Mixed Columns and Add

Round Key. These layers will provide the AES algorithm

with the necessary protection for secure data transfer.

Steganography has existed in the “secure transfer”

community ever since 440 B.C., where Greek Kings

shaved the head of a villager and placed important

information on his/her scalp. The villager was then sent

back to the village after his/her hair had grown back.

With this method in mind, steganography can easily be

described as providing security for sensitive data through

the means of obscurity.

Steganography compared to cryptography poses a

significant difference in objective. Encryption provides

communication with security through the use of scramble

letters and symbols. With cryptography, any adversary

can clearly see that the transmitted message is encrypted

and can be passed along for further cryptanalysis or can

perform actions that can hinder the transmitted message

without the secret key.

This paper will demonstrate how to encrypt data

using the AES algorithm and utilizing steganography to

embed information in a media file to provide obscurity

for elementary data transfer. Section 2 explains the

design of the AES algorithm and Section 3 discusses the

previously known attacks of AES algorithm. A section 4

describes how steganography is used. Section 5 discusses

related works. Section 6 will discuss the application of

how the AES encryption and steganography used

together for an elementary data transfer.

2. ADVANCED ENCRYPTION STANDARD

The AES algorithm is not only equipped for software

purposes but also with providing security to hardware

devices. The AES algorithm performs bitwise operations,

making encryption for hardware efficient.

Figure 1:

Figure 1 displays the number of rounds that are

generated by each particular key length provided by the

AES standard, where

Nk is the number of 32-bit words generated from the

key length. These words are known as the sub-keys.

Nb represents the number of 32-bit words, made from

the state (the AES standard operates on Nb = 4).

Nr is the number of rounds that are utilized for the

given key length.

The five components that are responsible for the

robustness of the AES algorithm are Key Expansion,

Substitution Bytes, Shift Rows, Mix Columns, and Add

Key Round. In the AES algorithm, each input value

represents in the polynomial form in the GF (28).

Key Expansion is responsible for generating the key

schedule and is processed before encrypt and decrypt

ciphers. In this process sub-keys are created. For the

experiments in this paper, the AES-256 was utilized to

test the highest level of security. Because of the AES 256,

there were 60 words generated from the key expansion.

Each key length of the AES encryption uses the formula

in equation (1) to produce the proper number of sub-

words.

Nb (Nr-1) (1)

The substitution bytes are calculated using a pre-

computed table known as the S-Box. For testing

purposes, the S-Box was developed using C-

programming language that was capable of accessing the

hardware that derived S-Box values, which sits at the

core of the security in the AES algorithm. The process

accomplished to obtain a sound understanding of the

importance of this component and how values were

derived. In developing this individual component, the S-

Box is efficient and provides non-linearity and performs

a one-for-substitution of an input byte value. To calculate

the substitution byte of the data value, the S-Box uses

two transformation methods known as the modular

inverse and the affine transformation. The modular

inverse is responsible for finding the multiplicative

inverse of the giving input byte by utilizing the extended

Euclidean algorithm.

Figure 2: Structure of affine transformation matrix

operation

After the inverse of the giving input value has been

obtained, it was then sent through the affine

transformation where the S-Box value is the result.

Figure 2 displays the structure of affine transformation

matrix operation. The affine transformation is

accomplished by using the formula {out byte} = M {in

byte} XOR {v} where M is a pre-determined matrix and

v is the vector of the multiplicative inverse byte.

Figure 3: multiplicative inverse and affine transformation

Figure 3 demonstrates the use of the multiplicative

inverse and affine transformation to obtain an S-Box

value. In figure 3, the hexadecimal value of {54} was the

input byte. The data byte of {54} was processed through

the multiplicative inverse transformation finding a value

that congruent to:

1 mod x8+x4+x3+x+1 (2)

In this operation shown in equation (2), the Galois

Field used to represent the polynomial form for the input

byte. We represent these values in the GF(28) which is

the standard field for the AES algorithm. Using the

irreducible polynomial x8+x4+x3+x+1 with a degree of 8

that is provided by the norm is a modulo that corresponds

to the multiplication of two polynomials. The value B’ is

the result of the multiplicative inverse. The result of this

transformation is the hexadecimal value of {4C}. Finally,

the multiplicative inverse result was used to obtain the S-

Box value in the affine transformation. In this

transformation, a simple matrix multiplication is applied

using a pre-determined 4 x 4 matrix found in figure 2 and

the multiplicative inverse result. The result of these two

transformations is the S-Box value.

The inverse substitution byte function operates

similar to the forward substitution byte function found in

the encryption process providing non-linearity between

any two values. However, the inverse substitution

method utilizes the affine transformation and

multiplicative inverse functions in reverse order. The

Affine Transformation is the lead off transformation in

this operation and applied first by using the inverse

Affine Transformation matrix as in Figure 4.

Figure 4: inverse Affine Transformation matrix

Figure 5 shows the result of this operation is the

inverse of the original input value. The value obtained

from the affine transformation is then passed to the

multiplicative inverse function to obtain the original

value.

Figure 5: Inverse of the input operation

In this project, experiments took place that tested the

speeds between the S-Box and inverse S-Box being

accessed by the pre-computed tables as used in majority

of AES programs and the hardcode of the various steps in

deriving the S-Box and Inverse S-Box values. After

conducting ten experiments it was proven that the

hardcode of the S-Box and inverse S-Box operations took

on average about 7.918 seconds. With the precomputed

tables, this same operation took on average about 4.034

seconds. The results of this experiment conveyed that

using the per-computed tables is on average 3.839

seconds faster than the hardcoded forward and inverse S-

Box operation.

The Shifts Rows component of the AES algorithm is

the second procedure of the encryption process and is

responsible for shifting each row by a certain number of

spaces to the left.

Figure 6 displays the basic transformations of the

shift rows function. The first row is not shifted at all, the

second row is shifted one space to the left, the third row

is shifted two spaces to the left, and the fourth row is

shifted three spaces to the left. The shift rows operation

increases the properties of linearity influences.

Figure 6: Basic transformations of the shift rows

function.

Unlike the shift rows operation being the first

procedure of the encryption process, the inverse shift

rows operation is first of the decryption process. Similar

to the shift rows operation in the encrypt process.

Figure 7: basis transformations of the inverse shift row

operation

Figure 7, demonstrates the basis transformations of

the inverse shift row operation. The first row is not

shifted, the second row is shifted once, the third row is

shifted twice and the fourth row is shifted three times.

However, the shifts in the decrypt process will be done to

the right as.

The Mixed Columns component is responsible for

operating on each column of the state. The values of the

state are polynomials of the GF(28). Each column of the

state undergoes a transformation by multiplying modulo

x4 + 1 against an established polynomial resulting in the

matrix shown in Figure 8. Each column is multiplied

against the 4x4 matrix. This operation is processed until

the Nr-1 round.

Figure 8: Transformation Matrix

With the inverse mixed columns used in the

decryption process, the same logic is used in this

operation as it was used in the encryption operation.

Figure 9, represents the 4x4 matrix used against the four

byte input values of each column. The Add Round Key

was responsible for adding the Round Key that was

obtained from the key schedule to the state utilizing a

bitwise XOR operation.

Figure 9: 4x4 matrix used against the four byte input

values of each column

3. AES ATTACKS

The only known attacks on the AES algorithm are

side-channel attacks and attacks on weaknesses found in

implementation or key management. The AES algorithm

must be implemented in the correct strategic way as

required by the AES standards. The first key-recovery

attacks on full AES were due to Bogdanov et al [2]. The

attack is a biclique attack and is faster than brute force by

a factor of about four. It requires 2126.2 operations to

recover an AES-128 key. Bogdanov et al concludes the

following results.

 The first key recovery attack on the full AES-128

with computational complexity 2126.1.

 The first key recovery attack on the full AES-192

with computational complexity 2189.7.

 The first key recovery attack on the full AES-256

with computational complexity 2254.4.

 Attacks with lower complexity on the reduced-round

versions of AES not considered before, including an

attack on 8-round AES-128 with complexity 2124.9.

 Preimage attacks on compression functions based on

the full AES versions

The National Security Agency (NSA) expects that 256 bit

AES keys may be cracked by 2018.

4. STEGANOGRAPHY

Steganography conceals the secret message in plain

sight through the use of a cover object. Steganography

can be used for concealing and protecting the objects.

Concealing is being able to hide the secret message in a

cover object without an adversary being aware of any

information embedded. Protecting, however, is used in

situations where media data has to be protected. Many

people use this technique of steganography, such as

digital watermarking, in order to protect the original

works of authorship to author.

Although steganography has various techniques, the

experiments of this paper utilize the least significant bit

insertion method for each trial. The two common used

methods in steganography are the least significant bit

insertion method and the Discrete Cosine Transformation

(DCT) method. The least significant bit insertion method

is the least complex of the two, being capable of

accessing the RGB of each pixel (picture element). The

objective of this technique is to swap the least significant

bit of each color in every pixel with the bit of the secret

data. Because of its low level of complexity the LSB

insertion method does not provide efficient robustness.

This is vulnerable to transformations such as

modifications. In addition to file compressions, a jpeg

file format could not withstand this technique, losing

information for the extracting process. For the

experiments of this paper, a bmp file format was utilized.

However, complex mathematically algorithms can be

developed to provide scattered positions for the secret

data.

Steganography is profoundly a unique process.

Unlike other tests (based on speed), the steganography

demonstration in this paper is measured by three

characteristics. These trials had to satisfy these

conditions. First, after embedding the secret data within

the cover object is to protect the integrity of the Stego

object. Once the Stego object is sent through the data

communication medium, a technique is needed to protect

the embedded data at the point of retrieval. Next, the

stego object must be indistinguishable from the cover

object. Once the secret information has been embedded

within the cover object, the Stego object should be

completely identical to the cover object, displaying no

signs of variations. Finally, the extracting process should

be accurate. After the receiver has received the stego

object and performed the extracting operation, the

message should be returned in the original form (sent

from source). These characteristics will determine the

success of the stenographic operation.

5. RELATED WORK

Understanding the basics of cryptography, finite

fields, and steganography were important to the

development of the AES algorithm and steganography.

The reference [3 - 6] provides the basics. Manoj et al. [7]

performed AES based steganography. Manoj utilized

steganography with biometrics. The work uses skin tone

for the embedding process. The secret data was

embedded in one of the high-frequency sub-band of

DWT. Data hiding was achieved by cropping an image

interactively.

The authors in [8] discussed the secure

steganography approach using AES. They used AES-128

and utilized least two significant bits for transformation.

The current model uses 256 bits and S-Box for

steganography which differs from Ramaiya [8]. The

image analysis is characteristic in both cases.

Recently, Arjun et al. [9] discussed steganography

based AES algorithm. The authors presented limited

literature on AES and usage of LSB function was not

seen. The authors used bit plane complexity for

steganography technique. This method divided the image

into bit planes before using AES algorithm.

6. IMPLEMENTATION AND RESULTS

In our implementation experiments, a simple 55 byte

text file was utilized to demonstrate the operations of

enhancing the security of a secret message using

cryptography and steganography, which are implemented

using the step-down procedures below.

 Because the AES-256 is the desired cryptographic

function, the first step is to create a 32-bit key and

encrypt the data using the AES-256 algorithm.

 Next, the cover object is loaded for the placement of

the encrypted message.

 Once the image is uploaded, the intensity of each

pixel is then entered into the access domain. During

this process, the Least Significant Bit (LSB) of each

required pixel of the Red, Green, Blue color is

available for the embedding alteration.

 A stego key is then created in order to conceal the

encrypted message. The stego key will be used to

grant permission to proceed with extracting process.

 The secret message is then converted into its binary

form in so that each bit can be embedded into the

Least Significant Bit binary value of each color.

 The message length of the encrypted message is

obtained. This will allow the receiver to recover the

positions of where the secret message starts and ends

in the extracting process.

 Each bit of the encrypted file is then placed at the

Least Significant Bit value of each color in the pixels

altering the color value slightly.

 The stego object is then sent to the receiver and once

received; the receiver will use the stego key in order

to perform the extracting operation of the encrypted

message.

 After the encrypted message is extracted it is then

decrypted using the inverse operation of the AES

algorithm.

By using the above procedures, Figure 10 below

displays the results of the experiment.

Original Message

Figure 10 (a)

Encrypted Message

Figure 10 (b)

Medial File

Cover Object Stego Object

Figure 10 (c)

Decrypted Message

Figure 10 (d)

 Figure 10 (a) displays the original message (Hello

World, Welcome to the place of Computer Science.)

that was used for the encrypting process using the

AES-256 cryptographic function. Since the AES-256

was utilized a key of 32 bytes was created. Note: it is

never advised to have the key set in the program but

for demonstration purposes it was created inside the

program. Once finished, the encrypted message was

generated which is found in Figure 10 (b).

 Figure 10 (c) displays two identical images.

However, these two images are different. The image

on the left is the cover object or the media file that

was loaded for the placement of the encrypted

message. In this testing, the cover object was a

bitmap image file of about 786.5KB in size. The

intensity of each pixel was entered into the access

domain for the embedding process.

 The stego key was created in order to allow the

program to process the extracting process. After the

stego key was created, the encrypted message was

the converted to its binary form in order to be

embedded into each color inside of each pixel.

 The Least Significant Bit (LSB) of each required

pixel of the Red, Green, Blue color was available for

the embedding alteration. Here a Stego key was

created in order to conceal the secret message.

 The message length of the secret file was obtained

for the positions of where the secret message starts

and ends for the steganography decoding process.

 Each bit of the encrypted message was then placed at

the Least Significant Bit of the color value of each

pixel, altering the color value slightly.

 After the embedding process was completed the

resulting image was generated with the encrypted

message embedded into it which can be found on the

right of Figure 10 (c). In comparison, the stego

object must remain unchanged to the human eye.

Capacity of each image was compared to test for any

changes in the size. When this procedure was tested

there was no different in size, resulting in the image

appearing unchanged to the human eye.

 After the stego object reached the receiver’s end, the

stego key was applied in order to perform the decode

process to extract the encrypted message.

 The encrypted message was then decrypted using the

inverse operation of the AES algorithm giving the

results of Figure 10 (d). As one can see the

decrypted message derived back to the original

message resulting in the procedure being a success.

7. CONCLUSION

We conducted the series of experiments to make sure

our algorithm works as desired. There is more to explore

about the field of Cryptography and Steganography.

Because these are the most common foundations of the

two components more work will be done to improve

effectiveness and efficiency.

Future work will include implementing public key

cryptography to enhance the security of the data in

transit. Also, experiments and techniques will be

developed for processing a steganography program at the

cloud level for the improvement of cloud security.

REFERENCES
[1] J. Daemen and V. Rijmen, “AES Proposal: Rijndael, AES

Algorithm Submission”, September 3, 1999

(http://www.nist.gov/CryptoToolkit)

[2] A. Bogdanov; D. Khovratovich and C. Rechberger,

"Biclique Cryptanalysis of the Full AES”, Volume 7073 of

the series Lecture Notes in Computer Science, 2011, pp

344-371.

[3] Paar, Christof, and Jan Pelzl. Understanding Cryptography.

Springer, 2010.

[4] Shashikala Channalli, Ajay Jadhav. “Steganography An

Art of Hiding Data”. International Journal on Computer

Science and Engineering, Vol.1 (3), 2009, 137-141.

[5] J. Buchmann., “5 DES”, Introduction to cryptography,

Springer, 2001, pp. 119-120.

[6] D. Canright., “A very Compact S-Box for AES”, Springer,

Volume 3659, Lecture Notes in Computer Science, 2005,

pp 441-455.

[7] M. Gowtham, et al., “AES based Steganography”,

IJAIEM, vol.2, issue 1, 2013, pp 382-389.

[8] M. Ramaiya, et al., “Secured Steganography Approach

Using AES”, IJCSEITR, vol 3, issue 3, 2013, pp 185-192.

[9] A. Kumthe, et al., “Steganography based on AES

Algorithm and BPCS Technique for a Securing Image”,

IJARCSSE, vol 6, issue 3, 2016, pp 116-119.

http://research.microsoft.com/en-us/projects/cryptanalysis/aesbc.pdf
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

