
Document Identification with MapReduce Framework

Yenumula B Reddy

Department of Computer Science

Grambling State University,

Grambling, USA

email: ybreddy@gram.edu

Abstract—Hadoop technology made a break through to

process the unformatted data and generates the results

faster than ever. Before Hadoop technology, the results were

produced for formatted data using SQL and other things,

and have them effectively sharing memory, central

processing unit, disk, and network input/output more

efficiently. There was no proper system to analyze

unformatted data. The paper discusses the MapReduce

framework to identify a required document from a stream of

documents. We presented an algorithm called MapReduce to

detect sensitive documents that identify sensitive or required

document among the streams of documents. The algorithm

was tested using the Hadoop package and Java program.

The results conclude that the Java program is useful for

small documents. The Hadoop technology helps in stream of

documents and produces the results much faster than simple

java program implementation.

Keywords: MapReduce; Hadoop Distributed File Systems;

Big data; key, shuffle; Apache Zookeeper;

I. INTRODUCTION

Big data (lower case is used for Big data in most of the
places unless it is required to stress the word Big) is a
general term used for a large volume of data that are
structured, unstructured and semi-structured data created
or generated by a company. This data cannot be loaded
using any database models and it is not possible to get
results with available query languages. That means this
data cannot be processed using traditional tools. The data
is not a specific quantity in terms of a number of bytes
(terra-bytes, petabytes or Exabyte). It is continuously
growing in size every minute. It is real big and grows in
Exabyte. The origins are from a variety of platforms.
Volume changes quickly and its growth can’t be predicted.
It is expensive to analyze, organize, and preparing as
useful data. Therefore, we need special effort to prepare as
meaningful by using new algorithms, special hardware and
software. There may not be a single tool to analyze and
create big data as meaningful data. The tools may vary to
analyze data. The big data management needs a generating
high quality of data to answer the business queries.

The primary goal is to discover the repeatable business
patterns, uncover the hidden patterns, and understand the
unknown correlations and other useful information. The
business giants have access to the information, but they do

not know to get the value out of it. The traditional tools are
not helpful due semi-structured storage. The big data
analytics may commonly use software tools such as
predictive analytics and data mining. The technology
associated with big data analytics includes NoSQL
databases, Hadoop and MapReduce. These are open
source frameworks that support processing of big data.
The analysis needs MapReduce to distribute the work
among a large number of computers and process in real-
time. Hadoop structure lowers the risk of catastrophic
system failure, and even significant number of nodes
become inoperative.

The government and information technology managers
are highly motivated to turn the massive data into use.
Today Hadoop framework and MapReduce offer new
technology to process and transform Big data into
meaningful data. It is required to deploy the infrastructure
differently to support the distributed processing and meet
the real-time demands. The IT managers found that
security and privacy are the major problems particularly
while using third-party cloud service providers.

The structured and unstructured data comes from a
variety of sources. Adoption of big data tools to process
the big data is increasing. High priority is given to
improving the big data formalizing and processing. The
top data for transactions include business data documents,
email, sensor data, image data, Weblogs, Internet search
indexing, and attached files. The IT group found that the
interest in learning about technology, deploy the packages
to process the data, and adopt the infrastructure for better
performance and affordable cost. They are in the process
of implementing Apache Hadoop frameworks, and
commercial distributions of the Hadoop distributed
framework and other NoSQL databases.

Currently, priority is given to processing and analyzing
unstructured data resources including Weblogs, social
media, e-mail, photos, and videos. Unstructured emails are
given priority to analyze and process. As a first step, the IT
staff is working on batch processing and move to real-time
processing. The companies are concerned about the
scalability, low latency, and performance in storing and
analyzing the data. Further, they are worried about
protection of data for third-party cloud providers.
Standards are required for data privacy, security, and
interoperability for data and systems.

The big data is useful if we analyze and store in a
meaningful way so that the data can be accessed
immediately. The main goal is to store the data to ensure
that the data is accessible for business intelligence and
analysis. It is required to design a tool to analyze the data
and provide the answers with minimum efforts and time.
The challenges include the size, structure, origin, variety,
and continuous change in data. The data is real big in size
(terra-bytes or eta-bytes) and unstructured. It contains text,
figures, videos, tweets, Facebook posts, website clicks,
and different types of data from a variety of websites. The
origins are varied and come from a variety of platforms
and multiple touch points. Data changes fast in terms of
format, size, and types of websites. Further, the software is
required to pull, sort, and make the data meaningful. There
is no universal solution to make such data meaningful.
Further, the data is produced in universally available
languages. Processing such data may need separate
algorithms (depending upon the data). There are many
predictions in years to come about the data coming from
an unknown source and unstructured in nature. The
predictions include the standardization and marketing. The
following predictions include the data origin, type, size
and management.

 Massive data collection across multiple points

 Firmer grip on the data collected by different groups

 Generalization of format for Internet data and/or data

generated by business media

 Entering of social media as part of big data

generation

The main purpose of the data management (analyzing
and processing) is to make sense of the collected data from
various data collection points. Making sense of data means
that the end point of the processing of data must be able to
answer the business queries. The queries include data
mining related predictions, business queries, and
management assistance.

The Hadoop project was adopted more in the
Department of Defense than in other agencies. These
agencies could not use the Hadoop system design because
the Hadoop design lacks reusability due to Java
Application Programming Interfaces for data access in
Apache. Research is required in understanding the Hadoop
system design, security models, and usage in a specific
application. Protocol level modifications help in improving
the security at source level.

Federated systems enable collaboration of various
networks, systems and organizations at different trust
levels. Clients must be separated from service with
authentication and authorization procedures. Existing
security models protect the resources within the boundary
of the organization. In federated systems, new participants
join and leave continuously. They may not all be trusted.
Therefore, federated systems require the security
specification for each function. Depending upon the
system sensitivity level the boundary constraints are
incorporated. Individual protection domains are required

for each entity. Therefore, the existing security domain
procedures do not work in federated systems.

The federated systems are distributed. The security
system in federated systems separates the client access,
authentication, and authorization. Therefore, they need
collaboration between networking, companies and
associated systems. Due to the involvement of many
entities in the federated systems, it is difficult to maintain
the security among these entities. The threat may be
expected (unavoidable) from a variety of sources. Hence, a
high-level coarse-grained security goals need to be
specified in the requirements.

In this paper, we discussed the Hadoop single node
installation and introduced an algorithm to identify the
sensitive documents. Section 2 discusses the current state
of Hadoop distributed file system. MapReduce
programming model is discussed in section 3 and
implementation in Section 4. Finally, Section 5 discusses
the conclusions and future work.

II. HADOOP DISTRIBUTED FILE SYSTEMS – CURRENT

STATUS

Data backup in Hadoop file systems using snapshots
was discussed in [1]. The authors designed an algorithm
for selective copy on appends and low memory overheads.
In this work, the snapshot tree and garbage collection was
managed by Name-node. The architecture of Hadoop
Distributed File Systems (HDFS) and the experiences to
manage 25 petabytes of Yahoo data was discussed in [2].
The fault tolerant google file system running on
inexpensive commodity hardware with aggregate
performance to a large number of clients was discussed in
[3]. The paper discusses many aspects of design and
provides a report of measurements from both micro-
benchmarks and real world use. The MapReduce
programming model was explained and it’s easy to use
functions were discussed in [4]. The document discussed
the experiences and lessons learned in implanting the
model. Further, it discusses the impact of slow machines in
redundant execution, locality of optimization, writing
single copy of the immediate data to local disc, and saving
the network bandwidth. Chang et al. [5] discussed the
dynamic data control over data layout and format using
‘Bitable’ a flexible solution. They claimed that many
projects are successfully using this model by adding more
machines for process over the time.

The federated security architecture was discussed in
Windows Communication Foundation (WCF) [6]. WCF
incorporates the security in federated systems to build and
deploy the federated systems. The architecture of these
federated systems includes the federation, domain/realm,
security token service, and consists of primary security
architecture. The current mobile devices were
implemented with imitation of 60K tasks, but the next
generation of Apache MapREduce supports 100K
concurrent tasks [7]. In MapReduce, users specify the
computation in terms of the map, and a reduce function.
The available software modules in MapReduce
automatically paralyze the computation and schedule the

parallel operations with the help of network and
computational facilities. These facilities help to complete
the operation much faster. Every day, an average of a
hundred thousand MapReduce jobs are executed on
Google clusters.

 Halevy et al. [8] discussed that a nonparametric model
is needed to represent the data in large data sources. They
believe that a nonparametric model holds a lot of details
compared to a parametric model. The authors believe that
the selection of unsupervised learning on unlabeled data
generates better results than on labeled data. Halevy et al.
[8] pointed out that future research includes the creation of
specific data sets by automatically combining data from
multiple tables. Combing data from multiple tables also
includes unstructured Web pages or Web search queries.
Thuraisingham [9] discussed various types of security
policies including local, generic, component, export and
federate. The security policy generation enforcing also
included in this study.

Hadoop security was discussed in the reports [10 - 15].
Reddy [10] proposed the security model for Hadoop
systems at access control and security level changes
depending upon the sensitivity of the data. Authentication
and encryption are the two Security levels for big data in
Hadoop. Ravi [11] concludes that Kerberos files keep the
intruders away from accessing the file system and
Kerberos system has better protection compared to other
federated systems. Chary et al. [12] discussed the current
level of security in Hadoop distributed file systems that
include the client access for Hadoop cluster using
Kerberos Protocol and authorization to access.

O’Malley et al. [13] and Das et al.[14] discussed the
security threats from different user groups in Kerberos
authentication system. The research in Kerberos and
MapReduce implementation details also discusses the
security, role of delegation token. The research in [13] and
[14] emphasizes the need for security in internal and
external access level for Hadoop systems. The work
describes the need for limits of access rights to specific
users by application, isolation between customers,
information protection and incorporation of encryption
models.

Srinath [15] presented “Airavat” a MapReduce-based
prototype system, provides strong security, privacy and
guarantees for distributed computations of sensitive data.
The model described in “Airavat” explains how to use
different parameters, estimate their values, and test on
several different problems. This system does not follow
the software engineering methodology. Therefore, it has
weak use cases and complicated processes in specifying
the parameters. Since MapReduce computations are not
efficient, organizations raised critical questions on privacy
and trust of data during the MapReduce computations.

Preserving the privacy in big data was discussed by
McSherry [16]. McSherry’s Privacy integrated queries
(PINQ) presents an opportunity to establish a more formal
and transparent basis for privacy technology. The
algorithms designed help the users in increasing the
privacy-preserving and increases the portability. Partha et

al. [17] presented a system that learns for data-integrated
queries which use sequences of associations. The
associations include foreign keys, links, schema,
mappings, synonyms, and taxonomies. They create
multiple ranked queries linking the matches to keywords.
These queries are linked to Web-forms and users have only
to fill the keywords to get answers. MapReduce
application was used for integer factorization [18], Matrix
computation [19], and machine learning on multicore
systems [20]. None of these papers discussed the detection
of sensitive data files among the streams of data files. The
current paper introduced an algorithm called MapReduce
Algorithm to Detect SEnsitive Documents (MADSED).

III. MAPREDUCE PROGRAMMING MODEL

One of the programming models in MapReduce is
breaking the large problem into several smaller problems.
The solutions to the problems are then combined using the
MapReduce function to give a solution to the original
problem. The functionality is similar to software
engineering top down design. There are many questions
that arise in MapReduce application due to dynamic input,
nodes may fail, number of smaller problems may exceed
the number of nodes, dependable sub-problems,
distribution of input to the smaller jobs, coordination of
nodes, and synchronization of completed work.
MapReduce programming model and the associated
implementation can be used to solve these problems by
processing and generating large data sets.

MapReduce application divides into three parts: Map,
Shuffle and Sort, and Reduce. A Map part of MapReduce
job splits the input data-set into independent chunks. The
independent chunks are processed in a completely parallel
manner using Map task. A given input pair can have zero
or more output pairs. The map-outputs are merged and
constructed with respect to the key values. These pairs are
propagated to reduce function. The reduced function then
merges these values to form a possibly smaller set of
values. That is, the reduced function filters the map output
and produces the results with respect to key. The total
functionality includes scheduling the tasks, monitoring
them, and re-executes the failed tasks.

The mapper breaks down the problem into smaller bits.
These bits are processed parallel to produce a solution. The
formula (1) produces new key values.

),(),('' vkvk (1)

Where, k = key, v = value. These values are used for

searching the keywords in another semantic domain to
produce intermediate values (document identification and
document) for each call. In Figure 1a, A is document
identification and is a document. The mapper then

combines related keys and prepare the partitions to search
in the documents. The map-outputs are sorted, merged and
constructed with respect to the key values in the shuffle
step. The aggregated values are filtered and then return a
new set of results in the reduce phase. After completion of

reducing phase, it returns all possible values with respect
to a key. The process is shown in Figures 1a [21] and 1b
[22].

Figure 1a. Map, Shuffle, and Reduce phase example.

Figure 1b. Map, Shuffle, and Reduce phase example.

For example, group the words of same length in the
statement “The Big data is useful if we analyze and stored
in a meaningful way so that the data can be accessed
quickly”. The MapReduce framework groups all of the
values by key (each word). The Table I shows the output
of key (the number of letters in a key and key word) called
value pairs. The same procedure will be applied for each
document (one document or multiple documents). Each
document will be treated separately at the time of process
in MapReduce function.

TABLE I. KEY AND WORD

3: The

3: big

4: data

2: is

6: useful

2: if

2: we

7: analyze

3: and

6: stored

2: in

1: a

10: meaningful

3: way

2: so

4: that

3: the

4: data

3: can

2: be

8: accessed

7: quickly

In Table I, the keys are grouped according to number
of letters in a word (1 letter word or 2 letter word etc.) and

figure out number of items in each key. The number of
items in each key (1 letter word or 2 letter word etc.) is
shown in Table II. The reduce function counts the number
of items with key size of the list (Table III). The reduction
can be done in parallel using Graphics Processing Units
(GPUs).

TABLE II. WORDS RELATED TO EACH KEY

1: a

2: is, if, we, in, so, be

3: the, big, , way, the, can

4: data, and, that, data

6: useful, stored

7: analyze, quickly

8: accessed

10: meaningful

TABLE III. KEY WITH THE SIZE APPEARS IN THE LIST

1: 1

2: 6

3: 5

4: 4

6: 2

7: 2

8: 1

10: 1

The algorithms for Map, Shuffle, and reduce are given

below.

The MapReduce algorithm to generate Table I, II and III

for all documents are done in three phases includes

mapper, combiner, and reducer.

class Mapper

 method Map (Document-id id, document d)

for each term t in document d

 store the term and its size

class Combiner

 method combine (term t, [c1, c2, …])

 sum =0

 for each term t in list [c1, c2, …]

 append to list of same size terms

 complete for different size terms

class Reducer

 method Reduce (term t, counts [c1, c2, ….])

 for count c in [c1, c2, …]

count the same size terms and store number of

occurrences of each term in the document

repeat this for all terms

The algorithm generates the tables similar to Table I,

II, an III using this algorithm from the given document or

documents. This algorithm is enough to find the number of
occurrences of each term. We need the extension of the
algorithm to detect the importance or sensitivity of the
document. The algorithm for detecting the required
documents among the documents with the help of keys
and their weights is called MapReduce Algorithm to
Detect Sensitive Documents (MADSED).

A. MADSED Algorithm

Let us assume that the key sizes are: 3, 5, 6, 7 letters

 Divide the document into N sub-documents

 Filter each sub-document by leaving only words of

sizes 3, 5, 6, and 7

 Count # of times each key word appears in the sub

document

 Shuffle the sub document results into single output

with number of times the keyword appears

 Calculate value of each key word by multiply each

keyword by its weight and times appear

 Add each keyword output values as result

 If the result (output) is greater than threshold value,

the document is important; if it is boarder on

threshold, it is for consideration; otherwise reject

 End of algorithm

The Algorithm was implemented using Hadoop

technology and java program implementation.

IV. IMPLEMENTATION

The Hadoop 1.2.1 from the Apache Website was
installed on Linux operating system. The JavaTM 1.7.x
was installed as part of the installation. Initially, we tested
a single node installation. It has login and password
protection. We used a text file from the Hadoop folder by
using the commend (2).

bin/hadoop dfs -copyFromLocal
/home/csadmin/Downloads/gutenberg /user/csadmin/Gutenberg.
 (2)

The commands and their usage are available at
http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-
common/FileSystemShell.html

For more information http://www.apache.org/

HDFS as a general DFS for applications are available at
http://www.opensourceforu.com/2013/12/peek-hadoop-
distributed-file-system/

To make sure the file is copied successfully use the
following command
bin/hadoop dfs -ls /user/csadmin

The command to run the MapReduce is

bin/hadoop jar hadoop-examples-1.2.1.jar wordcount
/user/csadmin/gutenberg /user/csadmin/gutenberg-output

Finally, check the output generated by MapReduce. It
generates all words and number of times each word
repeated. Table IV shows the sample output of first few
words.

TABLE IV: SAMPLE OUTPUT OF MAPREDUCE

"(Lo)cra" 1

"1490 1

"1498," 1

"35" 1

"40," 1

"A 2

"AS-IS". 1

"A_ 1

"Absoluti 1

"Alack! 1

"Alack!" 1

"Alla 1

As a next step, we used the keywords and stored only

those keywords and number of times each keyword
repeated from the generated output. Multiply each
keyword with its weight and number of times repeated and
add all the resulted values. For example, the keywords are
Oil and Alaska. If the weight for oil = 0.02 and Alaska is
0.1. The oil repeats 15 times in the document and Alaska
repeats 20 times in the document. The total value is
0.02*15 + 0.1*20= 0.3+2.0=2.3. If the total value greater
than the threshold value then the document is retrieved.
The algorithm was implemented using Java program and
generated the results. The results produced through Java
program are the same as Hadoop results. The java program
is good for small files and takes more time in case of large
files. Hadoop technology produces the results much faster
and recommended for large files. The algorithm is useful
for detecting the sensitive data or files whenever a stream
of files is entering in the organization. The algorithm
separates the sensitive files from a large set of files.
Further, the process helps to check only limited number of
files among thousands of files.

V. CONCLUSIONS AND FUTURE RESEARCH

The paper discusses the MapReduce framework to
identify an essential document from a stream of
documents. The research discusses the current state of
Hadoop distributed File Systems, MapReduce
programming model, and presents an algorithm to identify
sensitive or required document among the streams of
documents. The algorithm was tested using the Hadoop
package and Java program. The results conclude that the
Java program is useful for small documents whereas
Hadoop helps in large and a stream of documents. Further,
Hadoop produces the results must faster than simple java
program implementation.

The future research involves testing the documents
with Hadoop multimode and Hadoop with Graphics
Processing Unit (GPU) based technology. The work is

http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://www.apache.org/
http://www.opensourceforu.com/2013/12/peek-hadoop-distributed-file-system/
http://www.opensourceforu.com/2013/12/peek-hadoop-distributed-file-system/

underway and results will be available soon. Big data
security is another problem that is not discussed in this
paper.

ACKNOWLEDGEMENTS

The research work was supported by the AFRL
Collaboration Program – Sensors Research, Air Force
Contract FA8650-13-C-5800, through subcontract number
GRAM 13-S7700-02-C2.

REFERENCES

[1] S. Agarwal, D. Borthakur, and I. Stoica, “Snapshots in Hadoop

Distributed File System”, UC Berkeley Technical Report
UCB/EECS, 2011.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System”, 26th IEEE (MSST2010) Symposium on

Massive Storage Systems and Technologies, May, 2010, pp. 1-10.

[3] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File

System”, SOSP’03, October 19–22, 2003, pp. 29-43.
[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters”, Proc. 6th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2004, San
Francisco, USA, Dec. 2004, pp. 107-113.

[5] F. Chang et al. “Bigtable : A Distributed Storage System For

Structured Data”, ACM Transactions on Computer Systems
(TOCS), Volume 26 Issue 2, June 2008, pp. 204-218.

[6] Athontication, Microsoft Patterns & Practices,
http://msdn.microsoft.com/en-us/, 2012 [accessed: April 2013].

[7] J. Dean and S. Ghemawat, “MapReduce: simplified data

processing on large clusters”, CACM 50th anniversary issue, Vol.
51, issue 1, Jan 2008, pp. 107-113.

[8] A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable

Effectiveness of Data”, IEEE Intelligent Syst., 2009, pp. 8-12.
[9] B. Thuraisingham, “Security issues for federated database

systems”, Computers & Security, 13 (1994), pp. 509-525.

[10] Y. B. Reddy, “Access Control for Sensitive Data in Hadoop
Distributed File Systems”, Third International Conference on
Advanced Communications and Computation, INFOCOMP 2013,
November 17 - 22, 2013 - Lisbon, Portugal, pp. 72-78.

[11] P. Ravi, “Security for Big data in Hadoop”,
http://ravistechblog.wordpress.com/tag/Hadoop-security/, April 15,
2013 [Retrieved: April 2013].

[12] N. Chary, K. M. Siddalinga, and Rahman, “Security
Implementation in Hadoop”, http://search.iiit.ac.in/cloud
[retrieved: January 2013].

[13] O. O’Malle, K. Zhang, S. Radia., R. Marti, and C. Harrell.,
“Hadoop Security Design”, http://techcat.org/wp-
content/uploads/2013/04/Hadoop-security-design.pdf, 2009,
[Retrived: March 2013].

[14] D. Das, O. O’Malley, S. Radia, and K. Zhang, “Adding Security to
Apache Hadoop”, Hortonworks Technical Report 1,
http://www.Hortonworks.com, 12 pages.

[15] I. Roy Srinath, T.V. Setty, A. Kilzer, V. Shmatikov, and E.
Witchel, “Airavat: Security and Privacy for MapReduce”, 7th
USENIX conference on Networked systems design and
implementation (NSDI'10), 2010, Berkeley, CA, pp. 1-16.

[16] F. McSherry, “Privacy Integrated Queries: An Extensible Platform
for Privacy-Preserving Data Analysis”, Proceedings of SIGMOD,
2009, pp. 19-30.

[17] P. P. Talukdar et al. “Learning to Create Data-Integrating
Queries”, VLDB, 2008, pp. 785-796.

[18] J. Tordable, “MapReduce for Integer Factorization”, arXiv,
arXiv:1001.0421v1 [cs.DC], January 4, 2010. [Online].
http://arxiv.org/abs/1001.0421v1

[19] S. Seo, E. J. Yoon, J. Kim, S. Jim, J. Kim, and S. Maeng, “HAMA:
An Efficient Matrix Computation with the MapReduce
Framework”, IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom), 2010, pp. 721-
726

[20] C. Chu et al, “Map-Reduce for Machine Learning on Multicore”,
Advances in Neural Information Processing Systems 19 (NIPS
2006) pp. 281-288.

[21] Highly Scalable Blog, Articles on Big data, NoSQL, and Highly
Scalable Software Engineering, MapReduce Patterns, Algorithms,
and Use Cases, http://highlyscalable.wordpress.com/, Posted on
February 1, 2012 .

[22] K. S. Bejoys, “Word Count - Hadoop Map Reduce Example”,
http://kickstarthadoop.blogspot.com/, April 29, 2011 [Retrived:
July 27, 2014].

http://msdn.microsoft.com/en-us/library/ff649763.aspx
http://dl.acm.org/author_page.cfm?id=81100248818&coll=DL&dl=ACM&trk=0&cfid=309257983&cftoken=11667335
http://dl.acm.org/author_page.cfm?id=81100199690&coll=DL&dl=ACM&trk=0&cfid=309257983&cftoken=11667335
http://ravistechblog.wordpress.com/tag/hadoop-security/
http://search.iiit.ac.in/cloud/presentations/28.pdf
http://techcat.org/wp-content/uploads/2013/04/hadoop-security-design.pdf
http://techcat.org/wp-content/uploads/2013/04/hadoop-security-design.pdf
http://www.hortonworks.com/
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-19-2006
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-19-2006
http://highlyscalable.wordpress.com/
http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/
http://kickstarthadoop.blogspot.com/

