
Photon Netw Commun
DOI 10.1007/s11107-015-0526-y

An early congestion feedback and rate adjustment schemes
for many-to-one communication in cloud-based data center
networks

Prasanthi Sreekumari1 · Jae-il Jung1 · Meejeong Lee2

Received: 25 September 2014 / Accepted: 18 June 2015
© Springer Science+Business Media New York 2015

Abstract Cloud data centers are playing an important role
for providingmany online services such as web search, cloud
computing and back-end computations such as MapReduce
and BigTable. In data center network, there are three basic
requirements for the data center transport protocol such as
high throughput, low latency and high burst tolerance. Unfor-
tunately, conventional TCP protocols are unable to meet the
requirements of data center transport protocol. One of the
main practical issues of great importance is TCP Incast to
occur many-to-one communication sessions in data centers,
in which TCP experiences sharp degradation of throughput
and higher delay. This important issue in data center networks
has already attracted the researchers because of the devel-
opment of cloud computing. Recently, few solutions have
been proposed for improving the performance of TCP in data
center networks. Among that, DCTCP is the most popular
protocol in academic as well as industry areas due to its bet-
ter performance in terms of throughput and latency.Although
DCTCP provides significant performance improvements,
there are still some defects in maintaining the queue length
and throughput when the number of servers is too large. To
address this problem, we propose a simple and efficient TCP
protocol, namelyNewDCTCP as an improvement ofDCTCP
in data center networks. NewDCTCP modified the conges-

B Meejeong Lee
lmj@ewha.ac.kr

Prasanthi Sreekumari
s.prasanthy@gmail.com

Jae-il Jung
jijung@hanyang.ac.kr

1 Department of Electronics and Computer Engineering,
Hanyang University, Seoul, South Korea

2 Department of Computer Science and Engineering, Ewha
Womans University, Seoul, South Korea

tion feedback and window adjusting schemes of DCTCP to
mitigate the TCP Incast problem. Through detailed QualNet
experiments, we show that NewDCTCP significantly out-
performs DCTCP and TCP in terms of goodput and latency.
The experimental results also demonstrate that NewDCTCP
flows provide better link efficiency and fairness with respect
to DCTCP.

Keywords Cloud computing · Data center networks · TCP
Incast

1 Introduction

Cloud computing is emerging as an attractive Internet service
model [1]. A data center network is the key infrastructure
of cloud computing and big data, which has facilities with
hundreds of thousands of servers and network equipments
to provide different kinds of services and applications for
government systems, academic and communications [2]. The
key goal of data center network is to provide efficient and
fault-tolerant routing services to the applications of upper
layer and to interconnect the massive number of data center
servers.With the rise of cloud computing, data center services
are in high demand and large IT enterprises such as Google,
Amazon, IBMandMicrosoft havebuilt their owndata centers
to provide cloud services, which becomes an important role
in the future growth of Information and Communications
Technology (ICT) industry [3,4]. Data center networks are
finely designed and layered to achieve high bandwidth and
low latency. As a result, the data center environment is highly
different than that of the Internet, especially in terms of round
trip time (RTT) [5]. The main characteristics of a data center
network are high-speed links, limited-size switchbuffers, low
propagation delays and fault tolerance. The performance of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11107-015-0526-y&domain=pdf

Photon Netw Commun

data centers is significantly affected by the communication
networks, since all the applications of data center networks
are distributed in nature [6]. As a result, it is important to
analyze the characteristics of data center traffic for designing
efficient networking mechanisms for data centers.

Data center traffic can be classified into three types,
namely elephant traffic, mice traffic and cat traffic [5].
According to recent studies [5–7], above 90% of network
traffic in a data center is contributed by transmission control
protocol (TCP) due to its reliability of data transmission. In
data center network, there are three basic requirements for
the data center transport such as high throughput, low latency
and high burst tolerance. Unfortunately, numerous deficien-
cies have been observed about the performance of TCP in
data center networks. One of the main practical issues of
great importance to the performance degradation of TCP in
data center networks is TCP Incast, i.e., the drastic through-
put reduction when multiple senders communicate with a
single receiver [8]. When the number of servers is large, this
transmission pattern may overflow the buffer at the switch,
causing packet losses and timeouts.

Recently, few solutions [6–14] have been proposed for
improving the performance of TCP in data center networks.
Among those solutions, data center TCP (DCTCP) is the
most popular protocol in academic as well as industry areas,
proposed as a TCP replacement in data center environment
[11]. Microsoft introduces DCTCP in Windows Server 2012
[15]. DCTCP uses a simple marking mechanism at switches
basedon the explicit congestionnotification (ECN) [16] algo-
rithm and a few amendments at end hosts to control the
congestion window based on the congestion level of the net-
work. Thus, DCTCP can achieve high throughput and low
latency. Although DCTCP provides significant performance
improvements in throughput as well as latency, it tends to
provide lower throughput when the number of servers is too
large. It is because when the number of servers is small,
switch takes only less amount of buffer space to hold all the
incoming packets [7,9,10].On the other hand,when the num-
ber of servers is large, DCTCP is unable to mitigate the TCP
Incast problem due to buffer overflow at the switch, which
leads to the drop of few or more packets in the network [7].
In addition, some parameters and network configuration of
DCTCP show severe oscillations in queue length and degrade
the performance [10].

To address the above problems of DCTCP, we propose a
new data center TCP (NewDCTCP) protocol for improving
the performance of TCP in data center networks in terms of
goodput, latency, link efficiency and fairness. NewDCTCP
mainly consists of two schemes:

• Early congestion feedback This scheme is used for notify-
ing a more up-to-date congestion status to the senders by

marking the packets using the mark-front strategy instead
of mark-tail policy which is used by DCTCP.

The mark-front strategy helps the senders to avoid heavy
congestion, queue oscillations and frequent timeouts in the
network and thus reduces the performance degradation prob-
lem of TCP due to TCP Incast.

• Rate adjustment This scheme is used to control the sending
rate by modifying congestion window size and maximum
segment size based on the congestion in the network.

The QualNet-based experiments in a typical TCP Incast sce-
nario show that the performance ofNewDCTCP significantly
outperforms DCTCP and TCP (NewReno) in terms of good-
put and timeouts with the increase in the number of servers
inmany-to-one communication pattern.We also demonstrate
thatNewDCTCPflows provide better link efficiency and fair-
ness with respect to DCTCP.

The remainder of the paper is organized as follows. In
Sect. 2, we present a detail description about data center traf-
fic and TCP Incast in data center networks. We then discuss
the motivation including the related work and the limita-
tions of existing ECN-based data center transport protocols
in Sect. 3. In Sect. 4, we discuss the NewDCTCP algorithm
in detail. The performance improvement achieved by NewD-
CTCP algorithm compared to DCTCP and TCP in terms of
goodput, latency, link efficiency and fairness is presented in
Sect. 5. Finally, Sect. 6 concludes our paper.

2 Data center traffic and TCP Incast

In this section, we present the traffic pattern of data center
networks and the major problem that cause the performance
degradation of TCP in data center networks.

2.1 Data center traffic

Figure 1 shows the conventional network architecture for
data centers which is adapted from Cisco [17]. At the top of
the hierarchy, core routers (CR) carry data requests from the
clients in the Internet and are routed to aggregation switches
(S) through the access routers (AR) based on the destination
virtual IP addresses. The high-degree aggregation switches
forward the data requests to the inexpensive top-of-rack
(TOR) switches which provide 1Gbps link connectivity to
servers mounted on every rack. Each rack typically consists
of tens of servers. The switches at the layer 2 contain two
load balancers (LB) to provide the list of private and internal
addresses of physical servers in the racks. This list defines
the pool of servers that can handle requests to that virtual
IP addresses, and the load balancers spread request across
the servers in the pool. These days the cloud data center

123

Photon Netw Commun

Fig. 1 Conventional
architecture of data center
network

Internet

Data Center, Layer 3

Layer 2

Servers Servers Servers Servers

CR CR

AR AR AR AR

S S

S S S S

LB LB

TOR TOR TOR TOR

Table 1 Types of data center traffic

Traffic Size Applications

Elephant 1–50MB Video-demand, Software updates

Mice 2KB Facebook, Google

Cat 1MB YouTube

applications often follow the partition/aggregate traffic pat-
tern. Under this traffic pattern, the higher-level aggregators
receive the data request from the client and then partition into
several pieces and transfer to the workers via the lower-level
aggregators. According to [5,14,18], the data center traffic
can be categorized into three types:

1. Elephant traffic The large background flows form the
elephant traffic. In data center network, themediumnum-
ber of concurrent large flows is 1 [12].
2.Mice traffic It consists of latency critical flows. Major-
ity of the traffic is mice traffic or query traffic in data
center network.
3. Cat traffic Short message flows which are normally
used to update control state on the workers. Cat traffic is
time-sensitive.

Table 1 presents the different data center traffic types, mes-
sage sizes and applications. As we mentioned in the above
section, a data center transport needs three basic requirements
such as high throughput, low latency and high burst toler-
ance. However, TCP protocols implemented in data center
networks fail to satisfy these requirements due to the prob-
lem of TCP Incast in many-to-one communication pattern of
data center networks.

2.2 TCP Incast

TCP Incast is a catastrophic drop in the network through-
put that occurs when multiple senders communicate with a

single receiver in high-bandwidth, low-delay networks using
TCP. TCP Incast issue is firstly found in the distributed stor-
age system PanFS [8]. Figure 2 presents a typical TCP Incast
scenario of data center networks. In this many-to-one com-
munication pattern, the client sends barrier-synchronized
data requests to multiple servers via a switch.

Each server stores a fragment of data block, which is
referred to as server request unit (SRU). Upon receiving the
data request, the servers (S) begin to transmit the requested
data simultaneously and it traverse through a bottleneck link
in many-to-one fashion to the client, results in the overflow
of switch buffer size, leading to packet losses and retransmis-
sion timeouts. Effectively, the servers slow down the sending
of requested data, leading to drastic reduction in throughput
[19] which is termed as ‘TCP Incast.’ TCP Incast has been
defined as the pathological behavior of TCP that results in
gross under-utilization of the link capacity in various many-
to-one communication patterns [13]. A nice summary of the
preconditions for TCP Incast is stated in [20], where the pre-
conditions are listed as follows:

• High-bandwidth, low-latencynetworkswith small switch
buffers.

• Clients that issuebarrier-synchronized request in parallel.
• Servers that return a relatively small amount of data per
request.

3 Motivation

Recently, TCP Incast becomes a hot research topic in our
research community [1]. In order to improve the TCP perfor-
mance by addressing the issue of TCP Incast in data center
networks, several solutions [6–14] have been proposed from
the aspects of different layers including application layer,
transport layer and link layer. Among those solutions, we

123

Photon Netw Commun

Fig. 2 Scenario of TCP Incast

Sn

S4

S3

S2

S1

Client Switch

Servers Server Request Unit (SRU)

Congestion point

are interested in the transport layer solutions, particularly, by
leveraging the ECN [16]-based packet marking mechanism
for identifying the extent of network congestion. This section
presents the recent ECN-based data center transport proto-
cols proposed for mitigating the problem of TCP Incast in
data center networks and discusses the limitations of existing
ECN-based data center transport protocols.

3.1 Related work

As wementioned in Sect. 2, the main reason of TCP Incast is
the frequent retransmission timeouts caused by packet losses
due to network congestion. As a result, detection of network
congestion is important for mitigating the problem of TCP
Incast.

The packet marking mechanism of ECN is one of the
efficient and most popular way for detecting the congestion
status of the network. In data center networks, few proto-
cols are proposed for improving the performance of TCP
by leveraging the packet marking scheme of ECN. In this
subsection, we explain the ECN-based data center transport
protocols proposed for solving the problem of TCP Incast in
data center networks.

3.1.1 DCTCP

Alizadeh et al. [11] proposed a TCP like host-based proto-
col, named DCTCP, designed to operate with very low buffer
occupancies, without the loss of throughput for data cen-
ter networks. The goal of DCTCP is to achieve high burst
tolerance, low latency and high throughput, primarily by
reacting to congestion in proportion to the extent of conges-
tion. For detecting network congestion, DCTCP adopts the
packet marking mechanism of ECN. However, the standard
ECN has somemajor limitations [21,22]. First, echoing back
ECN information from the receiver to the sender takes time.
Second, the notification of congestion from ECNmay not be

timely enough for the sender to make the correct decision
which is suitable for the current network status under all cir-
cumstances [23]. By considering the limitations of standard
ECN, DCTCP employs a very simple active queue man-
agement scheme to mitigate the problem of TCP Incast. In
DCTCP, if the queue occupancy is greater than a thresh-
old value, DCTCP marks the arriving packets based on the
instantaneous queue lengthwith the Congestion Experienced
(CE) codepoint rather than using the average queue length
like standard ECN. For sending the timely congestion notifi-
cation to the sender, DCTCP sends acknowledgment (ACK)
for every packets, setting the ECN-Echo flag if and only if the
packet has a marked CE codepoint. With these two changes,
DCTCP has greatly improved the throughput of TCP [11].
DCTCP needs only changes in the settings of a single para-
meter on the switches and 30 lines of code changes to TCP,
which makes it easy to deploy.

3.1.2 FITDC

Zhang et al. [24] proposed an adaptive delay-based conges-
tion control algorithm, named TCP-FITDC, to tackle the
problem of TCP Incast in data center applications. The main
goal of this design is to achieve high throughput, low latency
and fast adaptive adjustment for TCP when deployed in data
centers. To achieve this goal, TCP-FITDC proposed two
schemes: marking scheme and adjusting scheme. The first
scheme is motivated by DCTCP. TCP-FITDC utilized the
modified packet marking mechanism defined in [11] from
ECN as an indication of network buffer occupancy and buffer
overflow of the switch. If the queue length is greater than a
single threshold value ‘K,’ the sender receives amarkedACK,
but unmarkedotherwise.Using this scheme, the sender is able
to maintain the queue length of the switch by detecting the
ECN-Echo bits inACKs. The second scheme of TCP-FITDC
adjusts the sender’s congestion window for controlling the
sending rate based on two classes of RTT values: RTT values

123

Photon Netw Commun

without ECN-Echoflag andRTTvalueswithECN-Echoflag.
Whenever the sender receives a RTT value without ECN-
Echo flag, the sender increases its congestion window by
assuming that the level of switch buffer does not exceed the
threshold value.

On the other hand, whenever the sender receives a RTT
value with ECN-Echo flag, the sender decreases the conges-
tion window size to reduce the buffer length of the switch.

3.1.3 TDCTCP

In [6], Das et al. designed a data center transport protocol,
named TDCTCP, to provide high throughput without signif-
icantly increasing the end-to-end delay. TDCTCP changes
were introduced in the DCTCP’s congestion control algo-
rithm and in the dynamic delayed ACK calculation of TCP
retransmission timer. First, TDCTCP modified the conges-
tion control mechanism of DCTCP algorithm to control
the congestion window in the congestion avoidance state
according to the level of congestion in the network. Sec-
ond, TDCTCP resets the value of congestion indicator to
0 after every delayed ACK timeouts for avoiding the stale
value of congestion indicator. Third, for better adapting to the
network conditions, TDCTCP calculates the delayed ACK
timeouts dynamically. These modifications help the senders
to react better to the current congestion state and provide
better throughput.

3.1.4 FaST

In [25], Hwang et al. proposed a fine-grained and scalable
(FaST) congestion control scheme using virtual congestion
window for cloud data center applications. Through analysis,
FaST revealed the scalability limits of the legacy approaches
and observed that the congestion control should be fine-
grained. FaSTmodified the DCTCP algorithm for improving
the scalability by reducing the segment size according to vir-
tual congestion window size. If the size of the minimum
congestion window falls below one packet, FaST adjusts
the amount of sending data by reducing the segment size to
effectively mitigate network congestion. By doing this, FaST
achieves low query completion times for the short flows gen-
erated by cloud applications, while still showing comparable
average throughput for background traffic. In addition, this
approach is simple to implement and the actual deployment is
easy, as it requires only a smallmodification at the server side.
Moreover, the authors realized that most of the TCP imple-
mentations could have a problem avoiding the silly window
syndrome function which is generally used to avoid very
small sending windows. In FaST, this function is turned off
only for partition/aggregate cloud applications.

3.2 Limitations of existing ECN-based data center
transport protocols

The existing ECN-based data center transport protocols used
the technique of marking the incoming packets that just
entered the queuewhen the queue length reaches the specified
threshold value. This type of packet marking policy is called
‘mark-tail.’ One of the major limitations of this technique
is its discrimination against new flows [26]. For example,
consider the buffer of the congested switch/router is already
occupied by the old flows and at that time, a new flow joins
in the network. With the mark-tail technique, the router will
mark all the incoming packets from the new flow rather than
marking the packets which are already in the buffer. As a
result, the umarked packets of old flows lead to increase the
size of congestion window, resulting in the usage of more
bandwidth, and the new flow has to backoff due to the reduc-
tion in congestion window size by the marked packets. This
causes a ‘lock-out’ phenomenon [26,27].

That is, in some situations, packets mark or drop from the
tail allows a single connection or a few flows to monopo-
lize switch buffer space preventing other connections from
accommodating packets in the queue [28]. Another limita-
tion is the discrimination against connectionswith lowerRTT
flows [9]. For avoiding the limitations of existing ECN-based
data center transport protocols, NewDCTCP uses mark-front
policy for marking packets by modifying the mark-tail pol-
icy of DCTCP as it is the most popular transport protocol for
data center networks. As shown in Fig. 3, in mark-front pol-
icy, when the queue length is greater than the threshold value
‘K,’ the switchesmark the packets from the front of the queue
rather than marking the incoming packets from the tail of the
queue. This marking technique helps the sender to receive
faster and up-to-date congestion signals than existing ECN-
based protocols and thus avoids packet losses and frequent
retransmission timeouts and thereby mitigate the problem of
TCP Incast in data center networks. In the next section, we
explain NewDCTCP in detail.

4 NewDCTCP algorithm

Based on the above discussions in Sect. 3, we design a
new data center transport protocol called NewDCTCP for
improving the performance of TCP by supporting many-to-
one communication in data center networks. The primary
objective of NewDCTCP is to mitigate the problem of TCP
Incast by reducing the frequent retransmission timeouts and
the loss of packets due to network congestion. For achiev-
ing our goal, we contribute two new schemes in NewDCTCP
such as (1) early congestion feedback and (2) rate adjustment
at the sources. The former scheme is the most important part
of NewDCTCP which is used for conveying the incipient

123

Photon Netw Commun

Fig. 3 Marking strategies a
mark-tail and b mark-front

(a) (b)

Q > K

Switch buffer

Mark packets from the tail of
the queue

Mark packets from the front
of the queue

Unmarked Packets

Q > K

Switch buffer

congestion signals to the sources as early as possible, and the
latter part is used for controlling the sending rate for reduc-
ing the queue length at the switches based on the congestion
level of the network. We now present our two schemes in the
following subsections.

4.1 Early congestion feedback

To address the important limitations of existing ECN-based
congestion notification mechanism of data center transport
protocols, we propose an efficient packet marking scheme
called ‘Early Congestion Feedback (ECF),’ which is able to
inform the senders about the up-to-date congestion status of
the network. In this scheme, we modified the packet marking
mechanism of DCTCP by adopting the mark-front technique
[27] instead of using themark-tail strategy. In our ECFmech-
anism using mark-front strategy, the switches mark the data
packets which are already in the buffer starting from the front
of the queue rather than marking the incoming packets from
the tail of the queue as shown in Fig. 3. Following are the
advantages of ECF mechanism of NewDCTCP.

1. It helps to deliver congestion notificationmore faster than
DCTCP packet marking mechanism.

2. It helps to control the buffer occupancy at the switch.
3. It helps to reduce the frequent retransmission timeouts.
4. It helps to improve link efficiency and fairness by avoid-

ing the lock-out phenomenon.

As shown in Fig. 4, when the instantaneous queue length
(Q) is greater than the threshold value ‘K,’ switches mark
the packets which are already in the buffer starting from the
front of the queue with CE codepoint and transfer to the
receiver. The receiver informs the sender via ECN-Echo flag.
As soon as the sender receives the ECN-Echo notification,
it reduces the size of congestion window according to our
rate adjustment scheme and sends the first new data packet.

Sender Switch Receiver

Sending packets

Mark packets from the front of
the queue

Q > K

Switch buffer

Marked ACKs

Rate Adjustment

Send new packet

Fig. 4 Early congestion feedback of NewDCTCP

This faster and earlier congestion feedback helps the senders
to reduce packet losses from sending more packets to the
congested network and thereby increase the throughput as
well as decrease the queuing delay.

4.2 Rate adjustment

In addition to earlier congestion notification, sending rate
adjustment is another important factor for improving the per-
formance of TCP in data center networks. In data center
networks, the queue length will increase rapidly in a short
time due to the concurrent arrival of burst of flows frommul-
tiple senders to a single receiver [10]. As a result, switch
marks lot of packets and the senders reduce their conges-
tion window size frequently and reduce the performance. In
ECN-enabled TCP, whenever the sender receives an ECN
marked ACK packet, it reduces the size of congestion win-
dow into half even if the network is less congested (in the
case of single ECN marked ACK packet). This will degrade

123

Photon Netw Commun

the performance of TCP. For avoiding the above degrada-
tion, DCTCP proposes a fine-grained reduction function for
reducing the size of congestion window based on the value
of α.

In DCTCP, whenever the sender receives an ACK with
ECE is set to 1, the sender reduces the congestion window
(cwnd) using Eq. (1),

cwnd ← cwnd × (1 − α/2) (1)

where α is calculated from the fraction of marked packets
(F) and weight factor (g) according to Eq. (2)

α = (1 − g) α + g × F (2)

If the value of α is near zero, it indicates that the net-
work is congested lightly. On the other hand, if the value
of α is equal to one, it indicates that the network is highly
congested. In the former case, DCTCP congestion window
slightly reduces according to Eq. (1). However, in the latter
case, DCTCP congestion window reduces like normal TCP.
The above adjustment of congestion window improves the
DCTCP sender to control the buffer occupancy at the switch
and thereby increases the throughput of data center networks.
Recent study [29] shows that one of the main problems in the
congestion window estimation of DCTCP is in the choice of
α initialization value. If the value of α is set to zero, the
sender can send as much as packets to the receiver which
leads to packet losses and retransmission timeouts. On the
other hand, if the value of α is set to one, the sender can
minimize the queuing delay but the amount of packets to be
transferred ismuch smaller. This will effect the throughput of
DCTCP sender. As a result, the initial value of α depends on
the applications that use DCTCP. Another problem is reset-
ting the value of α after retransmission timeout. For solving
this problem, recently, TDCTCP [6] modified the window
adjustment of DCTCP for avoiding the stale value of conges-
tion indicator. However, both DCTCP and TDCTCP needed
additional calculations for estimating the size of congestion
window at the sender side.

By considering the limitations of DCTCP window adjust-
ment algorithm, we propose a simple and efficient mecha-
nism for adjusting the sending rate of senders. In NewD-
CTCP, when the sender receives an unmarked ACK packet,
the sender proceeds like TCP NewReno. On the other hand,
if the sender receives a marked ACK packet, the sender esti-
mates the congestion window size based on the formula (3),

cwnd = max (cwnd/2, α × mss) (3)

α = number of packet sent

− number of marked ACK packets (4)

wheremss is themaximum segment size, andα is the number
of unmarked ACKs that were received in the last window of
data.

Using Eq. (3), the congestion window slightly reduces if
the number of unmarkedACKs is greater than half of the sent
packets. Otherwise, the sender assumes that the congestion
is severe and reduces the window into half for the safety side
by considering the sudden increase in queue length due to
burst of flows. This adjustment of congestion window helps
the sender to control the queue lengthwithout using any addi-
tional calculations like DCTCP and TDCTCP at the sender
side and helps to improve the performance in terms of good-
put and delay even in the presence of large number of servers
in the network. Moreover, we considered the situation that
congestion window reduces its value to less than one packet.
This situation is unavoidable in large-scale data centers [9].
If the congestion window consists of one mss and the sender
receives a marked ACK packet, then NewDCTCP reduces its
congestion window according to RFC 3168 [30].

4.3 Working rationale of NewDCTCP

In this section, we describe the working rationale of our
NewDCTCP algorithm as shown in Fig. 5. We modified the
DCTCP packet marking mechanism at the switch side and
the response tomarked packets at the sender side.We explain
the algorithms at sender, switch and receiver sides in detail.

4.3.1 Sender side

Whenever the sender receives marked ACK packets, the
sender controls the sending rate by invoking the rate adjust-
ment scheme of NewDCTCP. Otherwise, the sender behaves
same as TCP congestion control algorithms.

4.3.2 Switch side

At the time of receiving packets, the switch calculates the
instantaneous queue length based on the single threshold
value ‘K’ like DCTCP. If the queue length is greater than
K, the switch marks the packets in the buffer from the front
of the queue and sets the congestion experienced bit to the
outgoing packets to the receiver.

4.3.3 Receiver side

NewDCTCP receiver is same like DCTCP receiver. That is,
NewDCTCP receiver sends an ACK for every two packets if
there is no congestion notification from the switch. On the
other hand, if there is congestion notification, the receiver
sends all marked ACK packets to the sender as shown in
Fig. 6. With these simple modifications to sender as well as
switch sides, we can overcome the limitations of DCTCP

123

Photon Netw Commun

Fig. 5 Working of
NewDCTCP

Sent packets without mark

Sender
Switch Receiver

Mark from front
of the queue

ACK with or without ECN-Echo

Rate
adjustmentProceed like TCP

Yes

No

Yes

No

Data Packets

Cwnd > ssthresh

Marked
ACK Q > K

CE=0 CE=1

Send immediate ACK with
ECN=0

Send immediate ACK with
ECN=1

Send 1 ACK for every m
packets with ECN=1

Send 1 ACK for every m
packets with ECN=0

Fig. 6 ACK generation state machine [11]

and thereby increase the performance of TCP by mitigating
Incast issue in data center networks.

5 Performance evaluation

In this section, we present the performance of our proposed
protocol NewDCTCP through comprehensive simulations
using QualNet simulator [31]. We compare the performance
of NewDCTCP with DCTCP as it is the most popular data
center transport protocol and with NewReno [32] as it is
the widely used protocol in practice [33]. We implemented
DCTCP inQualNet using the source code got from [34]. TCP
NewReno is readily available in QualNet. We first describe
our evaluation methodology including topology, parameter
settings and performance metrics in Sect. 5.1. Then, we pre-
sented the evaluation results in Sect. 5.2.

5.1 Methodology

5.1.1 Topology

Our main goal of this work is to increase the throughput
of TCP by mitigating the problem of TCP Incast which is
caused by partition/aggregate traffic pattern of data center
networks [35]. For achieving our goal, we evaluate the per-
formance of NewDCTCP in a typical network topology for
partition/aggregate cloud applications as shown in Fig. 2.

In this scenario, the client requests a chunk of data from ‘N’
servers.When the client receives the full amount of requested
data from the servers, it sends another request. However, if
the response data from the servers overflow the buffer space,
it causes packet loss.As specified in [11,20], theworkloadwe
used in our simulation is fixed volume per server to compare
the performance ofNewDCTCPwithDCTCPandNewReno.

5.1.2 General parameter settings

To simulate the incast scenario, we used 50 servers connected
to a single client via a switch. The link capacity is set to
1Gbps and link delay is set to 25µs, RTT 100µs and RTO
min which is equal to 10ms. The buffer size is set to 64
and 256KB. We vary the SRU size from 10 to 128KB. The
marking threshold value ‘K’ is set according to [7,11] for
1Gbps link capacity. The value of the weighted averaging
factor ‘g’ for DCTCP is set to 0.0625 for buffer size 256KB
and 0.15 for 64KB. An FTP-generic application is run on
each source for sending the packets as quickly as possible.
We repeated the experiments for 100 times.

5.1.3 Performance metrics

To evaluate the performance of NewDCTCP with DCTCP
and TCP, we use four important performancemetrics asmen-
tioned in [10]. First, we calculated the goodput as the ratio of

123

Photon Netw Commun

Number of Senders
5 10 15 20 25 30 35 40 45 50

G
oo

dp
ut

 (M
bp

s)

0

500

1000

1500

2000

DCTCP 64KB
DCTCP 128KB
TCP 64KB
TCP 128KB
NewDCTCP 64KB
NewDCTCP 128KB

Number of Senders
20 25 30 35 40 45 50

N
um

be
r

of
 T

im
eo

ut
s

0

20

40

60

80

100

120

140

DCTCP
TCP
NewDCTCP

(a) (b)

Fig. 7 Comparison of a goodput and b timeouts of NewDCTCP, DCTCP and TCP with buffer size 64KB

the total data transferred by all the servers to the client and the
time required to complete the data transfer. Second, we eval-
uated the performance of the above variants in terms of link
efficiency and it is calculated from the number of acknowl-
edged packets (not counting the retransmissions) divided by
the possible number of packets that can be transmitted during
the simulation. Third, we evaluate the flow completion time
as specified in [36] and finally we evaluated the fairness of
NewDCTCP and DCTCP using Jain’s fairness index (JFI)
[37]. The Jain fairness index (JFI) function is expressed as
below,

F(x1, . . . , xN) =
(

N∑
i=1

xi

)2 /
N ×

N∑
i=1

(xi)
2

where xi is the goodput of the i th connection, and N is the
number of connections.

5.2 Results

In this section, we present the results of our evaluation of
NewDCTCP by comparing it with DCTCP and TCP in terms
of goodput, flow completion time, link efficiency and fairness
using a single bottleneck TCP Incast scenario with two dif-
ferent switch buffer sizes and various SRU sizes as stated in
the previous subsection. In addition, we present the perfor-
mance of NewDCTCP in terms of timeouts as it is the main
cause of TCP Incast in data center networks.

Figure 7a shows the performance of NewDCTCP com-
pared to DCTCP and TCP in terms of goodput. The buffer
size we set for this simulation is 64KB with SRU sizes 64
and 128KB. From the result, we observe that even we used a
smaller buffer size, the performance of NewDCTCP is iden-
tical to 64 and 128KBSRU till about 45 senders. Thatmeans,
the goodput of NewDCTCP does not vary much with differ-

Number of Senders
0 10 20 30 40 50

Fl
ow

 C
om

pl
e�

on
 T

im
e

(m
s)

0

10

20

30

40

50

DCTCP
TCP
NewDCTCP

Fig. 8 Comparison of flow completion time

ent SRU sizes. However, we see a sudden drop in the goodput
of TCP and DCTCP as the number of senders increases from
10 for TCP and around 25 for DCTCP. This is due to packet
losses caused by the overflow of small switch buffer size.
In our experiment for SRU size 64KB, the maximum good-
put of TCP is around 850Mbps, while that of DCTCP is
around 945Mbps. However, NewDCTCP achieves a good-
put of 981Mbps. On the other hand, when the SRU size
is 128KB, the goodput of DCTCP is reduced to 300Mbps
around 20 senders, while NewDCTCP maintains higher per-
formance. One of the main reasons for this achievement
of NewDCTCP is its earlier congestion feedback and rate
adjustment schemes.

In Fig. 7b, we present the timeouts comparison of NewD-
CTCP using buffer size 64KB and SRU size 128KB. As we
expected, NewDCTCP suffers only less number of timeouts
compared to DCTCP and TCP. This is because NewDCTCP
can efficiently control the queue length and thereby allocates
more packets into the queue than DCTCP and TCP and saves
the packets from queuing delay. Figure 8 presents the flow

123

Photon Netw Commun

Number of Senders
5 10 15 20 25 30 35 40 45 50

G
oo

dp
ut

 (M
bp

s)

0

200

400

600

800

1000

1200

1400

1600

DCTCP
TCP
NewDCTCP

Number of Senders

0 10 20 30 40 50

Fl
ow

 C
om

pl
e�

on
 T

im
e

(m
s)

0

50

100

150

200
50KB
100KB

(a) (b)

Fig. 9 Comparison of a goodput and b the flow completion time with buffer size 256KB

completion time of NewDCTCP compared to DCTCP and
TCP with SRU size 10KB and buffer size 256KB. The flow
completion time is influenced by the amount of queuing delay
and retransmission time [36]. From the result, we can see that
the flow completion time increases as the number of senders
increases. Compared to DCTCP and TCP, the flow comple-
tion time of NewDCTCP is less than 10ms when the number
of sender increases to 50. It means that the marking scheme
of NewDCTCP saves the senders from very large number of
packet drops and frequent timeouts. In the case of DCTCP,
the flow completion time is around 25ms as the number of
senders increases to 50, while that of TCP is 40ms.

This is because TCP suffers more packet drops and time-
outs due to its inability to detect the congestion of the network
before packet drop. As a result, in the presence of network
congestion either it is light or heavy, TCP can detect upon
the arrival of three duplicate ACKs or timeouts. On the
other hand, DCTCP is able to detect the congestion very
efficiently. However, the fine-grained reduction function of
DCTCP sometimes estimates the size of congestion window
size inaccurately and thereby increases the queuing delay
which results in packets drop.

Figure 9a presents the goodput of NewDCTCP com-
pared to DCTCP and TCP with SRU 128KB and buffer
size 256KB. Compared to the result in Fig. 7a, in Fig. 9,
we observe that the performance of NewDCTCP, DCTCP
and TCP improves with increase in buffer size. However,
the goodput of DCTCP degrades around 475Mbps after 35
senders. The reason is, the senders of DCTCP suffer from lot
of packet drops due to its overestimation of congestion win-
dow size. On the other hand, NewDCTCP still outperforms
the performance of DCTCP and TCP due to its early conges-
tion feedback using mark-front strategy and rate adjustment
mechanisms according to the level of network congestion.

Figure 9bdepicts the performanceofNewDCTCP in terms
of flow completion time with SRU size 50 and 100KB. For

Time
10 15 20 25 30 35 40 45 50

Pa
ck

et
s

10000

11000

12000

13000

14000

15000

16000

NewDCTCP
DCTCP

Fig. 10 Comparison of the marking schemes of NewDCTCP and
DCTCP

this experiment, we set the buffer size to 256KB. From the
result, we observed that the flow completion time of NewD-
CTCP with SRU size 50KB is lesser than with SRU size
100KB. As we mentioned above, the flow completion time
increases as the number of senders increases. With SRU size
50KB, the flow completion time is in the order of less than
100ms upto 50 senders and less than 50ms upto 35 senders.
In the case of SRU size 100KB, the flow completion time still
maintains less values. It means that NewDCTCP can achieve
better goodput by reducing frequent retransmission timeouts.
Figure 10 shows the packet marking mechanism of NewD-
CTCP and DCTCP. That means how early the NewDCTCP
marked the packet compared to DCTCP. For this experiment,
we trace the same packets marked by both protocols. In the
traced result, we can clearly find that the marking scheme of
NewDCTCP is much faster than DCTCP.

Next, we evaluate the protocols in terms of link effi-
ciency and fairness. Figure 11a shows the link efficiency of
NewDCTCP with DCTCP according to varying number of

123

Photon Netw Commun

Threshold 'K'

6 8 10 12 14 16 18 20

Li
nk

 E
ffi

ci
en

cy

0.80

0.85

0.90

0.95

1.00

DCTCP
NewDCTCP

Threshold 'K'

5 10 15 20

Fa
ir

ne
ss

 (F
(x

))

0.0

0.2

0.4

0.6

0.8

1.0

1.2
DCTCP
NewDCTCP

(a) (b)

Fig. 11 Comparison of a link efficiency and b fairness of NewDCTCP with DCTCP

threshold values ranging from 6 to 20. From the results, we
observed that the link efficiency increases when the value
of threshold increases. Compared to DCTCP, NewDCTCP
can utilize the link more efficiently according to different
thresholds. In small value of thresholds, the link utilization
of DCTCP is slightly low due to the reduction in conges-
tion window size unnecessarily. That is, the sender receives
the congestion signal falsely. However, the link efficiency of
NewDCTCP is better in low as well as high values of thresh-
olds. When congestion is detected, the congestion feedback
scheme of NewDCTCP marks the packets from the front
of the queue which helps to prevent the servers from send-
ing more packets to the congested switch and can avoid the
packet drops and timeouts. In addition, the feedback time of
the mark-front strategy is considerably shorter than that of
the mark-tail method. As a result, the servers can maintain
the lower queue length and can utilize the link efficiently.

Figure 11b presents the evaluation of NewDCTCP com-
pared to DCTCP in terms of fairness. For this experiment,
we use 10 connections and calculate the fairness using the
Jain fairness index as wementioned in the above section. The
result shows that the fairness of NewDCTCP is satisfactorily
compared to DCTCP.

6 Conclusion

In this paper, we have developed amodifiedDCTCP protocol
calledNewDCTCP for improving the performance ofTCPby
mitigating the TCP Incast problem in data center networks.
NewDCTCP modified the packet marking and rate adjust-
ment mechanisms of DCTCP for maintaining low queue
length and high throughput in data center networks. Instead
of usingmark-tail strategy for marking packets, NewDCTCP
uses mark-front strategy for sending early congestion feed-
back to the servers and thus avoids frequent timeouts. We

conducted extensive simulation using QualNet to validate
the performance and effectiveness of NewDCTCP compared
to DCTCP and TCP in terms of goodput, flow completion
time, link efficiency, timeouts and fairness. Our experimen-
tal results using the typical TCP Incast scenario show that
NewDCTCP achieves significant improvement in goodput
even when the number of servers is too large. Also, NewD-
CTCP achieves fairly satisfactory fairness index compared
to DCTCP.

Acknowledgments The authors gratefully acknowledge the anony-
mous reviewers for their valuable comments and suggestions for
improving the manuscript. This research was supported by Basic Sci-
ence Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (NRF-2011-
0023177) and the ICT R&D program of MSIP/IITP (B0126-15-1051,
A study on Hyper Connected Self-Organizing Network Infrastructure
Technologies for IoT Service) and MSIP/IITP (12221-14-1005, Soft-
ware Platform for ICT Equipments).

References

[1] Li, D., Xu, M., Liu, Y., Xie, X., Cui, Y., Wang, J., Chen, G.:
Reliable multicast in data center networks. IEEE Trans. Comput.
99, 1 (2013). doi:10.1109/TC.2013.91

[2] Zhang. Y., Ansari, N.: HERO: hierarchical energy optimization
for data center networks. In: 2012 IEEE international conference
on communications (ICC), pp. 2924–2928, 10–15 (2012). doi:10.
1109/ICC.2012.6363830

[3] Shang, Y., Li, D., Xu, M.: A comparison study of energy
proportionality of data center network architectures. In: 32nd
International conference on distributed computing systems work-
shops (ICDCSW), 2012, pp. 1–7, 18–21 (2012). doi:10.1109/
ICDCSW.2012.17

[4] Kant, Krishna: Data center evolution: a tutorial on state of the art,
issues, and challenges. Comput. Netw. 53(17), 2939–2965 (2009)

[5] Tahiliani, R.P., Tahiliani, M.P. Sekaran, K.C.: TCP variants for
data center networks: a comparative study. In: Proceedings of
the 2012 international symposium on cloud and services comput-
ing, IEEE Computer Society, Washington, DC, USA, pp. 57–62
(2012). doi:10.1109/ISCOS.2012.38

123

http://dx.doi.org/10.1109/TC.2013.91
http://dx.doi.org/10.1109/ICC.2012.6363830
http://dx.doi.org/10.1109/ICC.2012.6363830
http://dx.doi.org/10.1109/ICDCSW.2012.17
http://dx.doi.org/10.1109/ICDCSW.2012.17
http://dx.doi.org/10.1109/ISCOS.2012.38

Photon Netw Commun

[6] Das, T., Sivalingam, K.M.: TCP improvements for data center
networks. In: Fifth international conference on communication
systems and networks (COMSNETS), 2013, pp. 1–10, 7–10
(2013)

[7] Jiang, C., Li, D., Xu,M.: LTTP: an LT-code based transport proto-
col for many-to-one communication in data centers. IEEE J. Sel.
Areas Commun. 32(1), 52–64 (2014)

[8] Zhang, Y., Ansari, N.: On architecture design, congestion notifi-
cation, TCP incast and power consumption in data centers. IEEE
Commun. Surv. Tutor. 15(1), 39–64 (2013). (First Quarter 2013)

[9] Jiao, Zhang, Fengyuan, Ren, Xin, Yue, Ran, Shu, Chuang, Lin:
Sharing bandwidth by allocating switch buffer in data center net-
works. IEEE J. Sel. Areas Commun. 32(1), 39,51 (2014)

[10] Chen, W., Cheng, P., Ren, F., Shu, R., Lin, C.: Ease the queue
oscillation: analysis and enhancement of DCTCP. In: IEEE
33rd international conference on distributed computing systems
(ICDCS), 2013, pp. 450–459, 8–11 (2013). doi:10.1109/ICDCS.
2013.22

[11] Alizadeh, M., Greenberg, G., Maltz, D.A., Padhye, J., Patel, P.,
Prabhakar, B., Sengupta, S., Sridharan, M.: Data center TCP
(DCTCP). In: Proceedings of SIGCOMM’10, pp. 63–74, New
York, NY, USA, 2010. ACM (2010)

[12] Hwang, J., Yoo, J., Choi, N.: Deadline and incast aware TCP for
cloud data center networks. Comput. Netw. (2014). doi:10.1016/
j.comnet.2013.12.002

[13] Devkota, P., Reddy, A.L.N.: Performance of quantized conges-
tion notification in TCP incast scenarios of data centers. In: IEEE
International symposium on modeling, analysis and simulation of
computer and telecommunication systems (MASCOTS), 2010,
pp. 235–243, 17–19 (2010)

[14] Zhang, J., Ren, F., Tang,L., Lin,C.: TamingTCP incast throughput
collapse in data center networks. In: Proceedings of 21st interna-
tional conference on network protocols, Germany (2013)

[15] http://technet.microsoft.com/en-us/library/hh997028.aspx
[16] Ramakrishnan, K., Floyd, S., Black, D.: RFC 3168: the addition

of explicit congestion notification (ECN) to IP
[17] http://www.cisco.com/go/dce
[18] Abts, D., Felderman, B.: A guided tour through data-center

networking. Queue. 10(5), 10–14 (2012). doi:10.1145/2208917.
2208919. http://doi.acm.org/10.1145/2208917.2208919

[19] Bari, M.F., Boutaba, R., Esteves, R., Granville, L.Z., Podlesny,
M., Rabbani, M.G.: Data center network virtualization: a survey.
IEEE Commun. Surv. Tutor. 15(2), 909–928 (2013)

[20] Vasudevan, V., Phanishayee, A., Shah, H., Krevat, E., Andersen,
D.G., Ganger, G.R., Gibson, G.A., Mueller, B.: Safe and effective
fine-grained TCP retransmissions for datacenter communication.
In: Proceedings of SIGCOMM09, Barcelona, Spain, 2009, pp.
303–314 (2009)

[21] Quet, P-F., Chellappan, S., Durresi, A., Sridharan, M., Ozbay, H.,
Jain, R.: Guidelines for optimizing multi-level ECN using fluid
flow based TCP model. In: Proceedings of ITCOM2002 Quality
of Service over Next Generation Internet (2002)

[22] Wu, H., Ju, J., Lu, G., Guo, C., Xiong, Y., Zhang, Y.: Tuning ECN
for data center networks. In: Proceedings of the 8th international
conferenceon emergingnetworking experiments and technologies
(CoNEXT ’12). ACM, New York, NY, USA, 25–36 (2012)

[23] Xu, K., Tian, Y., Ansari, N.: TCP-Jersey for wireless IP communi-
cations. IEEE J. Sel. A. Commun. 22(4), 747–756 (2006). doi:10.
1109/JSAC.2004.825989

[24] Zhang, J., Wen, J., Wang, J., Zhao, W.: TCP-FITDC: an adaptive
approach to TCP incast avoidance for data center applications. In:
International conference on computing, networking and commu-
nications (ICNC), 2013, pp. 1048–1052, 28–31 (2013)

[25] Hwang, J., Yoo, J.: FaST: fine-grained and scalable TCP for cloud
data center networks. KSII Trans. Internet Inf. Syst. (TIIS) 8(3),
762–777 (2014)

[26] Arora, RM.: TCP/IP networkswith ECNoverAQM. https://curve.
carleton.ca/system/files/theses/26732.pdf

[27] Liu, C., Jain, R.: Improving explicit congestion notification with
the mark-front strategy. Comput. Netw. 35(2–3), 185–201 (2001).
doi:10.1016/S1389-1286(00)00167-5

[28] https://tools.ietf.org/html/rfc2309
[29] https://eggert.org/students/kato-thesis.pdf
[30] Ramakrishnan, K., Floyd, S., Black, D.: The addition of explicit

congestion notification (ECN) to IP, RFC 3168, Sept. 2001 (2001)
[31] http://web.scalable-networks.com/content/qualnet
[32] http://www.ietf.org/rfc/rfc3782.txt
[33] Anghel, A.S., Birke, R., Crisan, D., Gusat, M.: Cross-layer flow

and congestion control for datacenter networks. In: Proceedings
of the 3rd workshop on data center-converged and virtual ethernet
switching (DC-CaVES ’11), Yi Qian and Kurt Tutschku (Eds.).
ITCP 44–62 (2011)

[34] http://dev.pyra-handheld.com/index.php
[35] Hwang, J., Yoo, J., Choi, N.: IA-TCP: a rate based incast-

avoidance algorithm for TCP in data center networks. IEEE
International conference on communications (ICC) 2012, 1292–
1296 (2012)

[36] Xu, H., Li, B.: RepFlow: minimizing flow completion times with
replicated flows in data centers. Proceedings IEEE INFOCOM
2014, 1581–1589 (2014)

[37] “Fairness measure,” Dec. 2011, http://en.wikipedia.org/wiki/
Fairnessmeasure. (2011)

Prasanthi Sreekumari received the B.Sc.
degree in Physics from Kerala University,
India, in 2000, the M.C.A. degree from
Madurai Kamaraj University, India, in 2003,
the M.Tech. degree from JRN Rajasthan
Vidyapeeth Deemed University, India, in
2006 and the Ph.D. degree in Computer
Engineering from PusanNational University,
Busan, South Korea, in 2012. After receiving

her Ph.D. degree, shewas a postdoctoral researcher at theDepartment of
Computer Science and Engineering, Ehwa Womans University, Seoul,
South Korea, from 2012 to 2014. She is currently a Research Professor
at the Department of Electronics and Computer Engineering, Hanyang
University, Seoul, South Korea. Her research interests include Network
Protocols, Congestion Control, Data Center Networks and Wireless
Networks.

Jae-il Jung received the B.S. degree in
Electronic Engineering from Hanyang Uni-
versity, Seoul, SouthKorea, in 1981, theM.S.
degree in Electrical and Electronic Engi-
neering from Korea Advanced Institute of
Science and Technology (KAIST), Seoul,
Korea, in 1984, and the Ph.D. degree in
Computer Science and Networks from Ecole
Nationale Superieure des Telecommunica-

tions (ENST), Paris, France, in 1993.After receiving hisM.S. degree, he
was with Telecommunication Network Research labs., Korea Telecom,
from 1984 to 1997. He is currently a Professor at Hanyang Univer-
sity. His research interests include Wireless Networks and Vehicular IT
Services, especially in VANET Networks and V2X Communications.

123

http://dx.doi.org/10.1109/ICDCS.2013.22
http://dx.doi.org/10.1109/ICDCS.2013.22
http://dx.doi.org/10.1016/j.comnet.2013.12.002
http://dx.doi.org/10.1016/j.comnet.2013.12.002
http://technet.microsoft.com/en-us/library/hh997028.aspx
http://www.cisco.com/go/dce
http://dx.doi.org/10.1145/2208917.2208919
http://dx.doi.org/10.1145/2208917.2208919
http://doi.acm.org/10.1145/2208917.2208919
http://dx.doi.org/10.1109/JSAC.2004.825989
http://dx.doi.org/10.1109/JSAC.2004.825989
https://curve.carleton.ca/system/files/theses/26732.pdf
https://curve.carleton.ca/system/files/theses/26732.pdf
http://dx.doi.org/10.1016/S1389-1286(00)00167-5
https://tools.ietf.org/html/rfc2309
https://eggert.org/students/kato-thesis.pdf
http://web.scalable-networks.com/content/qualnet
http://www.ietf.org/rfc/rfc3782.txt
http://dev.pyra-handheld.com/index.php
http://en.wikipedia.org/wiki/Fairnessmeasure
http://en.wikipedia.org/wiki/Fairnessmeasure

Photon Netw Commun

MeejeongLee received theB.S. degree inCom-
puter Science from Ewha Womans University,
Seoul, South Korea, in 1987, the M.S. degree
in Computer Science from University of North
Carolina, Chapel Hill in 1989, and the Ph.D.
degree in Computer Engineering from North
Carolina State University, Raleigh, in 1994. In
1994, she joined the Department of Computer
Science and Engineering, Ewha Womans Uni-

versity, Seoul, South Korea, where she is currently a Professor. She
has been engaged in research in the field of Computer Communication
and Networks, and Performance Modeling and Evaluation. Her cur-
rent research interests focus on Routing and Transport Protocols for
Multimedia Traffic Transmission over Wireless Mobile Networks and
Internet.

123

	An early congestion feedback and rate adjustment schemes for many-to-one communication in cloud-based data center networks
	Abstract
	1 Introduction
	2 Data center traffic and TCP Incast
	2.1 Data center traffic
	2.2 TCP Incast

	3 Motivation
	3.1 Related work
	3.1.1 DCTCP
	3.1.2 FITDC
	3.1.3 TDCTCP
	3.1.4 FaST

	3.2 Limitations of existing ECN-based data center transport protocols

	4 NewDCTCP algorithm
	4.1 Early congestion feedback
	4.2 Rate adjustment
	4.3 Working rationale of NewDCTCP
	4.3.1 Sender side
	4.3.2 Switch side
	4.3.3 Receiver side

	5 Performance evaluation
	5.1 Methodology
	5.1.1 Topology
	5.1.2 General parameter settings
	5.1.3 Performance metrics

	5.2 Results

	6 Conclusion
	Acknowledgments
	References

